首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2273篇
  免费   571篇
  国内免费   777篇
测绘学   65篇
大气科学   261篇
地球物理   669篇
地质学   1701篇
海洋学   107篇
天文学   567篇
综合类   125篇
自然地理   126篇
  2024年   7篇
  2023年   24篇
  2022年   64篇
  2021年   76篇
  2020年   97篇
  2019年   99篇
  2018年   93篇
  2017年   112篇
  2016年   97篇
  2015年   106篇
  2014年   137篇
  2013年   163篇
  2012年   137篇
  2011年   143篇
  2010年   130篇
  2009年   168篇
  2008年   152篇
  2007年   196篇
  2006年   220篇
  2005年   141篇
  2004年   175篇
  2003年   146篇
  2002年   126篇
  2001年   106篇
  2000年   99篇
  1999年   102篇
  1998年   88篇
  1997年   58篇
  1996年   76篇
  1995年   62篇
  1994年   51篇
  1993年   47篇
  1992年   25篇
  1991年   29篇
  1990年   22篇
  1989年   19篇
  1988年   10篇
  1987年   7篇
  1986年   1篇
  1985年   1篇
  1984年   4篇
  1978年   1篇
  1977年   1篇
  1954年   3篇
排序方式: 共有3621条查询结果,搜索用时 187 毫秒
31.
大巴山西段高川地体构造变形特征及其意义   总被引:1,自引:0,他引:1  
勉略缝合带华北与华南大陆于印支期完成拼合的主要拼接带,在中国大陆的形成与演化中占据重要地位。但是,勉略带的东、西延伸,至今没有确定的结论,尤其陕西省勉县以东到湖北随州一带,还没有找到确凿的缝合带的证据。现今一些重要的文章多认为勉略带在勉县以东到达宁陕县两河口之后向南转折,沿着高川岩片的位置顺大巴山弧形构造带向东延伸到湖北随州一带。然而,本文的研究表明,高川岩片是一个独立于大巴山构造带的外来地质体,并称之为高川地体。高川地体是一个由近南北向右行走滑断层与轴向近南北向的走滑剪切褶皱构造组成的右行走滑构造系统,作者认为,它是大巴山冲断推覆构造向南推覆过程中,被从原勉略缝合带中挤过来的一片,它仅仅是被挟持在大巴山冲断—推覆构造带与大巴山前陆构造带之间的地壳浅层地质体,高川地体现在的位置不能代表勉略带向东的延伸。因此,大巴山弧形构造带也不是中国南北大陆最终碰撞拼贴的位置  相似文献   
32.
研究“源兆”的若干问题及途径分析   总被引:3,自引:3,他引:0  
王贵宣  张肇诚 《地震》1996,16(4):391-395
从位场理论的观点讨论了场和源的概念,建议将“场兆”改称为构造前兆,将“源兆”称为震源前兆。文中还分析了震源体与各种前兆观测方法探测的深度,并根据地磁与重力观测方法不同的物理基础和地质基础,指出震磁效应对于研究震源前兆的特殊意义,文中还介绍了1976唐山地震观测到震源前兆的部分实际地磁资料。  相似文献   
33.
张少泉  吕庆书 《地震》1993,(5):47-61
首都减灾圈,系首都减轻自然灾害预测防治圈。1991年12月20—21日在北京召开了《首都圈自然灾害及其减灾对策研讨会》。本文根据这次会议所提供的材料,在从整体上实现减灾的思想指导下,就首都减灾圈的“成灾背景”、“首都减灾圈的组成”、“首都减灾圈的灾害预测与防治状况”、“首都减灾圈的灾害关联性分析”、“首都减灾圈的减灾实效预估”和“首都减灾圈的减灾对策与实施”等六个带有共同性的问题,进行了讨论。供制定首都圈减灾方案时参考。  相似文献   
34.
据记载,分布于上扬子区寒武系的石膏岩仅有零星资料。如今,大量蒸发岩如溶蚀角砾岩、硬石膏、石盐岩及富钾卤水等已被发现。沉积相经历了从盆地相、台地相到蒸发岩相的演化过程。在中、下寒武统中找到海退沉积序列。古构造-古地理背景是蒸发岩沉积的重要控矿条件之一。周边板块运动及塑性基底的褶皱,导致台缘隆起及台内坳陷的形成。岩相古地理图展示从碳酸盐、硫酸盐到氯化物盐类的“泪滴式”沉积相带。蒸发岩沉积于台缘隆起及礁生长进入堰塞潟湖至盐湖阶段。在稳定坳陷区沉积盆地中蒸发岩系发育;石盐岩较厚,其溴氯比值为0.2—0.4;古气候炎热、干燥;在蒸发岩体周围有沉积(封层)水及溶滤水,其含钾(K~+)量为0.10—4.76g/L;水文地球化学比值(如钾氯比值、钾盐比值及钾溴比值等)指示含钾异常;盐湖浓缩卤水达到氯化物盐类沉积阶段及相应的构造封闭程度;含盐地质标志广泛分布等等。鉴于上述,估计该区可能具备钾盐成矿条件。然而目的层埋藏太深,因此笔者建议,应在浅埋部位进行有效的成矿预测,为普查指出远景区。  相似文献   
35.
伯英  刘成林  沈力建  丁婷 《地质学报》2022,96(7):2626-2633
在生物地球化学和“深穿透”理论的指导下,在兰坪-思茅盆地勐野井钾盐矿区及周边开展了生物地球化学找钾技术方法的探索性研究。沿江城县勐野井钾盐矿区及周边一线,对乔木类植物叶子进行了取样,分析,数据处理,特征指标筛选,获得了研究区植物样品主量和微量组分含量背景值,初步圈定了异常区,与以往圈定的找钾远景区较吻合。该区生物地球化学找钾技术取得较好的效果,今后还需扩大采样区域,获得更多样本数据,将找钾特征指标及其异常值的阈值进一步补充完善。  相似文献   
36.
Analysis of strain in Jurassic argillites forming part of the folded and thrusted sedimentary succession of the Lagonegro basin (southern Italian Apennines) has been carried out using ellipsoid-shaped reduction spots as strain markers. Most of the determined finite strain ellipsoids are of oblate type and show a peculiar distribution of the maximum extension direction (X), with maxima either subparallel or subperpendicular to the local fold axes. Using the strain matrix method, two different deformation histories have been considered to assist the interpretation of the observed finite strain pattern. A first deformation history involved vertical compaction followed by horizontal shortening (occurring by a combination of true tectonic strain and volume loss), whereby all strain is coaxial and there is no change in the intermediate axis of the strain ellipsoid. By this type of deformation sequence, which produces a deformation path where total strain moves from the oblate to the prolate strain field and back to the oblate field, prolate strain ellipsoids can be generated and may be recorded where tectonic deformation has not been large enough to reverse pretectonic compaction. This type of deformation history may be of local importance within the study area (i.e. it may characterize some fold hinge regions) and, more generally, is probably of limited occurrence in deformed pelitic rocks. A second deformation sequence considered the superposition of pre-tectonic compaction and tectonic strain consisting of initial layer-parallel shortening followed by layer-parallel shear (related to flexural folding). Also in this instance, volume change during tectonic deformation and tectonic plane strain have been assumed. For geologically reasonable amounts of volume loss due to compaction and of initial layer-parallel shortening, this type of deformation history is capable of producing a deformation path entirely lying within the oblate strain field, but still characterized by a changeover, during deformation, of the maximum extension axis (X) from a position parallel to the fold axis to one perpendicular to it. This type of deformation sequence may explain the main strain features observed in the study area, where most of the measured finite strain ellipsoids, determined from the limb regions of flexural folds, display an oblate shape, irrespective of the orientation of their maximum extension direction (X) with respect to the local structural trends. More generally, this type of deformation history provides a mechanism to account for the predominance of oblate strains in deformed pelitic rocks.  相似文献   
37.
本文通过环境背景值、风化壳地球化学、对流层(大气气溶胶)地球化学和人为地球化学异常,初步探讨了南极长城站地区的现代环境地球化学特征。分析表明:环境要素固有的地球化学性质、区域环境条件和自然环境演变之间具有深刻的内在联系。  相似文献   
38.
The major continental blocks in northeastern Asia are the North China block and the South China block, which have collided starting from the Korean peninsula. Geologic and geophysical interpretations reveal a well defined suture zone in northeastern China from Qinling through Dabie to Jiaodong. The discovery of high-pressure metamorphic rocks in the Hongseong area of the Korean peninsula, prominent evidence for the collision zone, indicates extension of the collision zone in northeastern China into the Korean peninsula. Interpretation of the GRACE satellite gravity dataset shows two prominent structural boundaries in the Yellow Sea. One extends from the Jiaodong Belt in eastern China to the Imjingang Belt in the Korean peninsula. The other extends from near Nanjing, eastern China, to Hongseong. Tectonic movement in or near the suture zone may be responsible for seismic activity in the western Korean peninsula and the development of the Yellow Sea sedimentary basin.  相似文献   
39.
East and Southeast Asia comprises a complex assembly of allochthonous continental lithospheric crustal fragments (terranes) together with volcanic arcs, and other terranes of oceanic and accretionary complex origins located at the zone of convergence between the Eurasian, Indo-Australian and Pacific Plates. The former wide separation of Asian terranes is indicated by contrasting faunas and floras developed on adjacent terranes due to their prior geographic separation, different palaeoclimates, and biogeographic isolation. The boundaries between Asian terranes are marked by major geological discontinuities (suture zones) that represent former ocean basins that once separated them. In some cases, the ocean basins have been completely destroyed, and terrane boundaries are marked by major fault zones. In other cases, remnants of the ocean basins and of subduction/accretion complexes remain and provide valuable information on the tectonic history of the terranes, the oceans that once separated them, and timings of amalgamation and accretion. The various allochthonous crustal fragments of East Asia have been brought into close juxtaposition by geological convergent plate tectonic processes. The Gondwana-derived East Asia crustal fragments successively rifted and separated from the margin of eastern Gondwana as three elongate continental slivers in the Devonian, Early Permian and Late Triassic–Late Jurassic. As these three continental slivers separated from Gondwana, three successive ocean basins, the Palaeo-Tethys,. Meso-Tethys and Ceno-Tethys, opened between these and Gondwana. Asian terranes progressively sutured to one another during the Palaeozoic to Cenozoic. South China and Indochina probably amalgamated in the Early Carboniferous but alternative scenarios with collision in the Permo–Triassic have been suggested. The Tarim terrane accreted to Eurasia in the Early Permian. The Sibumasu and Qiangtang terranes collided and sutured with Simao/Indochina/East Malaya in the Early–Middle Triassic and the West Sumatra terrane was transported westwards to a position outboard of Sibumasu during this collisional process. The Permo–Triassic also saw the progressive collision between South and North China (with possible extension of this collision being recognised in the Korean Peninsula) culminating in the Late Triassic. North China did not finally weld to Asia until the Late Jurassic. The Lhasa and West Burma terranes accreted to Eurasia in the Late Jurassic–Early Cretaceous and proto East and Southeast Asia had formed. Palaeogeographic reconstructions illustrating the evolution and assembly of Asian crustal fragments during the Phanerozoic are presented.  相似文献   
40.
Backstripping analysis and forward modeling of 162 stratigraphic columns and wells of the Eastern Cordillera (EC), Llanos, and Magdalena Valley shows the Mesozoic Colombian Basin is marked by five lithosphere stretching pulses. Three stretching events are suggested during the Triassic–Jurassic, but additional biostratigraphical data are needed to identify them precisely. The spatial distribution of lithosphere stretching values suggests that small, narrow (<150 km), asymmetric graben basins were located on opposite sides of the paleo-Magdalena–La Salina fault system, which probably was active as a master transtensional or strike-slip fault system. Paleomagnetic data suggesting a significant (at least 10°) northward translation of terranes west of the Bucaramanga fault during the Early Jurassic, and the similarity between the early Mesozoic stratigraphy and tectonic setting of the Payandé terrane with the Late Permian transtensional rift of the Eastern Cordillera of Peru and Bolivia indicate that the areas were adjacent in early Mesozoic times. New geochronological, petrological, stratigraphic, and structural research is necessary to test this hypothesis, including additional paleomagnetic investigations to determine the paleolatitudinal position of the Central Cordillera and adjacent tectonic terranes during the Triassic–Jurassic. Two stretching events are suggested for the Cretaceous: Berriasian–Hauterivian (144–127 Ma) and Aptian–Albian (121–102 Ma). During the Early Cretaceous, marine facies accumulated on an extensional basin system. Shallow-marine sedimentation ended at the end of the Cretaceous due to the accretion of oceanic terranes of the Western Cordillera. In Berriasian–Hauterivian subsidence curves, isopach maps and paleomagnetic data imply a (>180 km) wide, asymmetrical, transtensional half-rift basin existed, divided by the Santander Floresta horst or high. The location of small mafic intrusions coincides with areas of thin crust (crustal stretching factors >1.4) and maximum stretching of the subcrustal lithosphere. During the Aptian–early Albian, the basin extended toward the south in the Upper Magdalena Valley. Differences between crustal and subcrustal stretching values suggest some lowermost crustal decoupling between the crust and subcrustal lithosphere or that increased thermal thinning affected the mantle lithosphere. Late Cretaceous subsidence was mainly driven by lithospheric cooling, water loading, and horizontal compressional stresses generated by collision of oceanic terranes in western Colombia. Triassic transtensional basins were narrow and increased in width during the Triassic and Jurassic. Cretaceous transtensional basins were wider than Triassic–Jurassic basins. During the Mesozoic, the strike-slip component gradually decreased at the expense of the increase of the extensional component, as suggested by paleomagnetic data and lithosphere stretching values. During the Berriasian–Hauterivian, the eastern side of the extensional basin may have developed by reactivation of an older Paleozoic rift system associated with the Guaicáramo fault system. The western side probably developed through reactivation of an earlier normal fault system developed during Triassic–Jurassic transtension. Alternatively, the eastern and western margins of the graben may have developed along older strike-slip faults, which were the boundaries of the accretion of terranes west of the Guaicáramo fault during the Late Triassic and Jurassic. The increasing width of the graben system likely was the result of progressive tensional reactivation of preexisting upper crustal weakness zones. Lateral changes in Mesozoic sediment thickness suggest the reverse or thrust faults that now define the eastern and western borders of the EC were originally normal faults with a strike-slip component that inverted during the Cenozoic Andean orogeny. Thus, the Guaicáramo, La Salina, Bitúima, Magdalena, and Boyacá originally were transtensional faults. Their oblique orientation relative to the Mesozoic magmatic arc of the Central Cordillera may be the result of oblique slip extension during the Cretaceous or inherited from the pre-Mesozoic structural grains. However, not all Mesozoic transtensional faults were inverted.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号