首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2551篇
  免费   433篇
  国内免费   303篇
测绘学   108篇
大气科学   61篇
地球物理   735篇
地质学   1302篇
海洋学   135篇
天文学   10篇
综合类   113篇
自然地理   823篇
  2024年   21篇
  2023年   55篇
  2022年   102篇
  2021年   112篇
  2020年   115篇
  2019年   112篇
  2018年   85篇
  2017年   91篇
  2016年   123篇
  2015年   90篇
  2014年   129篇
  2013年   132篇
  2012年   125篇
  2011年   132篇
  2010年   124篇
  2009年   136篇
  2008年   162篇
  2007年   136篇
  2006年   119篇
  2005年   103篇
  2004年   138篇
  2003年   106篇
  2002年   94篇
  2001年   92篇
  2000年   107篇
  1999年   75篇
  1998年   78篇
  1997年   66篇
  1996年   49篇
  1995年   47篇
  1994年   48篇
  1993年   41篇
  1992年   50篇
  1991年   35篇
  1990年   22篇
  1989年   17篇
  1988年   10篇
  1987年   1篇
  1986年   4篇
  1985年   1篇
  1981年   1篇
  1975年   1篇
排序方式: 共有3287条查询结果,搜索用时 968 毫秒
981.
In this study, data from MODIS land surface temperature product level 3 (MOD11A2) were used to investigate the spatiotemporal variation of Eurasian lakes water surface temperature (LSWT) from 2001 to 2015, and to examine the most influencing factors of that variation. The temperature of most lakes in the dry climate zone and in the equatorial climatic zone varied from 17 to 31°C and from 23 to 27°C, respectively. LSWTs in the warm temperate and cold climatic zones were in the range of 20 to 27°C and −0.6 and 17°C, respectively. The average day time LSWT in the polar climate zone was −0.71°C in the summer. Lakes in high latitude and in the Tibetan Plateau displayed low LSWT, ranging from −11 to 26°C during the night time. Large spatial variations of diurnal temperature difference (DTD) were observed in lakes across Eurasia. However, variations in DTDs were small in lakes located in high latitude and in tropical rainforest regions. The shallow lakes showed a rapid response of LSWT to solar and atmospheric forcing, while in the large and deep lakes, that response was sluggish. Results of this study demonstrated the applicability of remote sensing and MODIS LST products to capture the spatial–temporal variability of LSWT across continental scales, in particular for the vast wilderness areas and protected environment in high latitude regions of the world. The approach can be used in future studies examining processes and factors controlling large scale variability of LSWT.  相似文献   
982.
Thermokarst lakes cover > 20% of the landscape throughout much of the Alaskan Arctic Coastal Plain (ACP) with shallow lakes freezing solid (grounded ice) and deeper lakes maintaining perennial liquid water (floating ice). Thus, lake depth relative to maximum ice thickness (1·5–2·0 m) represents an important threshold that impacts permafrost, aquatic habitat, and potentially geomorphic and hydrologic behaviour. We studied coupled hydrogeomorphic processes of 13 lakes representing a depth gradient across this threshold of maximum ice thickness by analysing remotely sensed, water quality, and climatic data over a 35‐year period. Shoreline erosion rates due to permafrost degradation ranged from < 0·2 m/year in very shallow lakes (0·4 m) up to 1·8 m/year in the deepest lakes (2·6 m). This pattern of thermokarst expansion masked detection of lake hydrologic change using remotely sensed imagery except for the shallowest lakes with stable shorelines. Changes in the surface area of these shallow lakes tracked interannual variation in precipitation minus evaporation (P ? EL) with periods of full and nearly dry basins. Shorter‐term (2004–2008) specific conductance data indicated a drying pattern across lakes of all depths consistent with the long‐term record for only shallow lakes. Our analysis suggests that grounded‐ice lakes are ice‐free on average 37 days longer than floating‐ice lakes resulting in a longer period of evaporative loss and more frequent negative P ? EL. These results suggest divergent hydrogeomorphic responses to a changing Arctic climate depending on the threshold created by water depth relative to maximum ice thickness in ACP lakes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
983.
984.
985.
986.
High‐altitude inland lakes in High Mountain Asia (HMA) are key indicators to climate change and variability as a result of mostly closed watersheds and minimal disturbance by human activities. However, examination of the spatial and temporal pattern of lake changes, especially for water‐level variations, is usually limited by poor accessibility of most lakes. Recently, satellite altimeters have demonstrated their potential to monitor water level changes of terrestrial water bodies including lakes and rivers. By combining multiple satellite altimetry data provided by the Laboratoire d'Etudes en Géophysique et Océanographie Spatiales (LEGOS) and Geoscience Laser Altimeter System (GLAS) instrument on the NASA Ice, Cloud and land Elevation satellite (ICESat), this study examined water level changes of typical lakes in HMA at a longer timescale (in the 1990s and 2000s) compared with earlier studies on Tibetan lakes. Cross‐evaluation of the radar altimetry data from LEGOS and laser altimetry data from ICESat/GLAS shows that they were in good agreement in depicting inter‐annual, seasonal and abrupt changes of lake level. The long‐term altimetry measurements reveal that water‐level changes of the 18 lakes showed remarkable spatial and temporal patterns that were characterized by different trends, onsets of rapid rises and magnitudes of inter‐annual variations for different lakes. During the study period, lakes in the central and northern HMA (15 lakes) showed a general growth tendency, while lakes in South Tibet (three lakes) showed significant shrinking tendency. Lakes in Central Tibet experienced rapid and stable water‐level rises around mid‐1990s followed by slowing growth rates after 2006. In contrast, the water‐level rises of lakes in the northern and north‐eastern Tibetan Plateau were characterized by abrupt increases in specific years rather than gradual growth. Meteorological data based on station observations indicate that the annual changes of water level showed strongly correlated with precipitation and evaporation but may not evidently related to the glacier melting induced by global warming. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
987.
Yuji Ito  Kazuro Momii 《水文研究》2015,29(9):2232-2242
Although few reports have described long‐term continuous anoxia in aquatic systems, Lake Ikeda in Japan experienced such conditions in the hypolimnion from 1990 to 2010. The present study aimed to assess temporal fluctuations in the lake's thermal stability from 1978 to 2011 to understand the influence of regional climate change on hypolimnetic anoxia in this lake. Because complete vertical mixing, which supplies dissolved oxygen (DO) to the hypolimnion, potentially occurs on February, we calculated the Schmidt stability index (S) in February and compared it with hypolimnetic DO dynamics. Vertical water temperature profiles were calculated using a one‐dimensional model, and calculated temperatures and meteorological data were used to analyse annual fluctuations in water temperatures, thermocline depth, meteorological variables and S. We estimated that mean annual air and volume‐weighted water temperatures increased by 0.028 and 0.033 °C year?1, respectively, from 1978 to 2011. Between 1986 and 1990, S and water temperature increased abruptly, probably due to a large upwards trend in air temperature (+0.239 °C year?1). We hypothesize that a mixing regime that lacked overturn took effect at this time and that this regime lasted until 2011, when S was particularly small. These results demonstrate that abrupt climate warming in the late 1980s likely triggered the termination of complete mixing and caused the 21‐year period of successive anoxia in Lake Ikeda. We conclude that the lake response to a rapid shift in regional climate conditions was a key factor in changing the hypolimnetic water environment and that thermal stability in winter is a critical environmental factor controlling the mixing regime and anoxic conditions in deep lakes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
988.
罗布泊位于塔里木盆地东端,地处欧亚大陆深腹地,罗北凹地则是罗布泊东北部的一个次级凹地。通过对罗北凹地LDK01深孔沉积物粒度、磁化率和地球化学的分析,并结合沉积物的岩性、盐类矿物形态特征和和组合类型、构造背景,对罗布泊地区第四纪成钾环境的阶段性变化规律进行探讨。研究表明,罗布泊地区早更新世以来依次发育了河流相、三角洲相、湖泊相-风成相等沉积体系,并呈现出明显快速的湖相推进和退缩交替的频繁变化,指示盐湖演化是干湿气候周期变化和湖盆周围山区淡水周期补给共同作用结果。第四纪时期罗北凹地发展并最终形成塔里木"高山深盆"中最深的次级凹地地貌,这是青藏高原隆升导致的向北挤压的必然结果,大地构造和环境的变化直接控制了罗布泊盐湖的构造演化和沉积体系的转变。罗布泊盐湖的演化大致可分为三个阶段:第一阶段为断陷阶段,早更新世以来主要沉积淡水河流湖泊相陆源碎屑物;第二阶段为坳陷阶段,中更新世中期发育膏岩湖相,以石膏等硫酸盐析出为主要特征;第三阶段为萎缩阶段,进入晚更新世,大量盐湖相钙芒硝沉积至全新世时期石盐等氯化物析出;上述三个阶段构成一个完整蒸发沉积构造旋回并于最终阶段中形成了超大型的钾盐矿床。  相似文献   
989.
江湖关系变化是影响洞庭湖水文泥沙环境的重要因素,关系到湖区航运的安全。以实测水文及地形数据为基础,研究了洞庭湖区水沙环境的变化特征,并分析了其对湖区航道的影响。结果表明:① 三峡蓄水后,枯季湖区月均流量趋于减少,湖区淤积减缓甚至出现冲刷,枯水期湖口低水位有所上升,湖面比降趋于降低;② 受来沙减少影响,湖区航道有所冲刷,湖口低水位上升使得湖区通航保证率水位有一定幅度上升,航道水深增加,三峡蓄水初期江湖关系变化对湖区航道的影响总体为积极因素,对湖区湘江航道的影响要大于开湖航道。  相似文献   
990.
A large quantity of drilling core, paleontology, geochemistry and geophysics data revealed several features of the Jiyang subbasin during the deposition of the Ek1-Es4 x members:(1) the paleotopography of the gentle slope belt had an extremely low gradient;(2) the paleoclimate frequently alternated between dry and wet periods in a generally arid setting;(3) there was strong weathering around the periphery of the basin;(4) the lake was very shallow;(5) the lake level frequently rose and fell; and(6) the sedimentary environment of the gentle slope belt was an overflooding lake. All of these factors provided favorable geological conditions for the development of an over-flooding lake delta. The lithologies of the continental over-flooding lake delta deposits are complex and diverse. The compositional maturity is moderate to low, and the grain size distribution curves and sedimentary structures indicate the presence of both gravity and traction currents. The sedimentary microfacies associations consist of a combination of ordered superposition of flood channels, distributary channels and sheet sands. The delta exhibits a weak foreset seismic reflection. The over-flooding lake delta deposits are laterally extensive. The sandstone content is high, and the individual sandstone beds are thin. The flood channel and distributary channel deposits exhibit evidence of bifurcation and lateral migration. The distribution of the sandbodies and the oxidation color of the mudstones provide evidence of cyclic deposition. The paleoclimate was the dominant factor controlling the development of the over-flooding lake delta. Due to the frequently alternating wet and dry paleoclimates, the over-flooding lake delta is characterized by the development of a broad upper plain and a lower delta plain. The upper delta plain is characterized by flood channel deposits, whereas the lower delta plain is represented by distributary channel deposits. The transition zone is characterized by the interaction of flood channels and distributary channels. Due to fault activity, the sandbodies of the over-flooding lake delta were juxtaposed against hydrocarbon source rocks, which was favorable for the development of lithologic reservoirs or structural-lithologic reservoirs. The lower delta plain deposits comprise the most favorable reservoirs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号