首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
地球物理   6篇
地质学   4篇
自然地理   4篇
  2021年   1篇
  2019年   1篇
  2014年   1篇
  2013年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2005年   3篇
  2004年   1篇
  2002年   2篇
  1996年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
11.
12.
Despite the great potential of peat bogs as climatic archives, to date only few studies have focused on the climatic controls on cellulose isotopic composition in modern bog plants. This study attempts to calibrate plant-climate relationships by sampling a set of modern plant species (both vascular plants and mosses) and bog surface waters along an altitude transect in Switzerland. Isotopic analyses of water samples show that the δ18O-values of surface bog waters follow the trend of precipitation despite significant scatter in the data set. Detailed sampling of surface waters within one bog shows that δ18O-values vary widely and are closely related to the micro-topography of the bog surface. More enriched 18O/16O ratios in water samples collected from small raised hummocks than the ones collected from hollows are documented in both horizontal and vertical profiles. A δ18O-δD plot indicates that the process leading to the isotopic enrichment of the uppermost surface waters is evaporation, greater above Sphagnum covered hummocks than above open pools. To investigate the implications of such high variability of source water for plant α-cellulose δ18O-values, a detailed study of both surface water and α-cellulose δ18O-values within one site is conducted. The large δ18O variability observed in surface waters is found to be considerably smoothed in α-cellulose (by a factor of 5-10 depending on the plant species). This indicates that the water used by plant photosynthetic processes reflects the isotopic composition of the average annual precipitation. This points to a source water level for plants of a few decimeters where the variations are smaller than at the air-water interface. The response of the α-cellulose δ18O to the environmental gradient along the altitude transect varies considerably from species to species. For most of the species studied, the δ18O-values decrease with altitude, following the trends of δ18O-values in precipitation and in surface water samples. Some species, the cotton sedge Eriophorum vaginatum and the moss Sphagnum capillifolium, show statistically significant δ18O relationships to an altitude of −1.8‰/km and −2.9‰/km respectively. However, some other plant species, Calluna vulgaris, Vaccinium uliginosum, Andromeda poliflora, Carex pauciflora, Sphagnum cuspidatum and Sphagnum magellanicum, do not, or only partially, reflect changes in climatic parameters associated with an altitude increase. Furthermore, changes in relative humidity, which are not correlated with altitude, are found to explain a large part of the variability in δ18O-values for the sedge Carex pauciflora and the moss Sphagnum cuspidatum. Therefore, this study confirms the importance of species-specific studies when interpreting 18O/16O ratios of macrofossils along a fossil peat sequence as a record of past climate changes. Our study allows to extend the mechanistic model that isotopically links source water and cellulose to the physiological specificities of sedges and mosses. A comparison of the modeled and calculated net biological fractionation factors for Eriophorum vaginatum and Sphagnum capillifolium reveals that these two species appear to have a more homogeneous leaf reservoir than trees.  相似文献   
13.
Two 14C accelerator mass spectrometry (AMS) wiggle‐match dated peat sequences from Denmark and northern England record changes in mire surface wetness reconstructed using plant macrofossil and testate amoebae analyses. A number of significant mid–late Holocene climatic deteriorations (wet shifts) associated with declines in solar activity were recorded (at ca. 2150 cal. yr BC, 740 cal. yr BC, cal. yr AD 930, cal. yr AD 1020, cal. yr AD 1280–1300, cal. yr AD 1640 and cal. yr AD 1790–1830). The wet shifts identified from ca. cal. yr AD 930 are concurrent with or lag decreases in solar activity by 10–50 years. These changes are replicated by previous records from these and other sites in the region and the new records provide improved precision for the ages of these changes. The rapidly accumulating (up to 2–3 yr cm?1, ~1310 yr old, 34 14C dates) Danish profile offers an unprecedented high‐resolution record of climate change from a peat bog, and has effectively recorded a number of significant but short‐lived climate change events since ca. cal. yr AD 690. The longer time intervals between samples and the greater length of time resolved by each sample in the British site due to slower peat accumulation rates (up to 11 yr cm?1, ~5250 yr old, 42 14C dates) acted as a natural smoothing filter preventing the clear registration of some of the rapid climate change events. Not all the significant rises in water table registered in the peat bog archives of the British and Danish sites have been caused by solar forcing, and may be the result of other processes such as changes in other external forcing factors, the internal variability of the climate system or raised bog ecosystem. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
14.
To investigate vertical changes of bacterial communities from living plants to the associated sediments and bacterial biogeochemical roles in peatland ecosystem,samples of different part of individual Sphagnum palustre and the different layers of the underlying sediments were collected from Dajiuhu Peatland in central China.All samples were subject to 16S rRNA gene clone libraries and quantitative PCR analysis.Even though bacteria vary in abundance at the same order of magnitude in all samples,they show great profile difference in composition from the top part of S.palustre to the low layer of the sediments.Cyanobacteria and alpha-Proteobacteria dominate at the top part whereas Acidobacteria at the middle part of S.palustre.Alpha-Proteobacteria and Acidobacteria are the dominant phyla at the bottom part of S.palustre and in the surface peat sediment.In contrast,bacterial communities in the subsurface sediments are dominated by Acidobacteria.These profile distributions of different bacterial communities are closely related to their ecological functions in the peatland ecosystem.Specifically,most Cyanobacteria were observed at the top green part of S.palustre,a horizon where the active photosynthesis of the moss occurs,which infers their endosymbiosis.In contrast,Acidobacteria,dominant in the subsurface sediments,are able to decompose the specific compounds on the cell wall of Sphagnum moss and thus might play an important role in the formation of the peatland,including the acidic condition.Methane oxidizing process might have been underestimated in Sphagnum peatland due to the identification of Methylocystaceae in all parts of the moss investigated here.The vertical difference in bacterial composition and bacterial ecological functions presented here sheds light on the understanding of biogeochemical processes,in particular the CH4 flux,in peat ecosystems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号