首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   4篇
  国内免费   9篇
地球物理   7篇
地质学   14篇
海洋学   4篇
天文学   47篇
综合类   2篇
自然地理   4篇
  2020年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   2篇
  2011年   8篇
  2010年   7篇
  2009年   6篇
  2008年   6篇
  2007年   5篇
  2006年   7篇
  2005年   7篇
  2004年   3篇
  2003年   2篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1995年   3篇
  1992年   2篇
  1990年   3篇
  1989年   1篇
  1986年   2篇
  1985年   1篇
排序方式: 共有78条查询结果,搜索用时 46 毫秒
21.
In the present paper we seek to understand the geologic diversity of units in the northern hemisphere of Vesta using HST observations (Binzel et al., 1997). First, we compare colors R(0.673 μm)/R(0.953 μm) and R(0.673 μm)/R(1.042 μm) of Vesta’s units with those of V-type asteroids (vestoids) as well as howardite, eucrite, and diogenite meteorites (HEDs). This comparative analysis showed that: (i) on the color-color plot, regions on Vesta are clustered whereas vestoids and HEDs cover a wide range in color; (ii) very few vestoids or HEDs fall into Vesta’s color region. This implies that Vesta’s units are more homogenous than most vestoids and HEDs examined here and material of the units are slightly different from that of vestoids and HEDs. Assuming reasonable choice of end-member materials, an optical model (Shkuratov et al., 1999) was used to simulate intimate mixtures of particles at the surface of Vesta’s units. Simulation of albedo, colors, and four-point spectra of Vesta’s units reveals that the rock-forming material is nearly equal for all units and has HED-like composition. Diversity of the units depends on the minor constituents such as chromite and a neutral phase. The western units contain more chromite and neutral phase than the eastern, consequently albedo of the western units is lower and their four-point spectra are flatter. Olivine and feldspar are also needed to give the best fit for the calculated and observed albedos and colors of Vesta’s units, but being in minor amount in Vesta’s rocks they play a secondary role in contributing to the optical properties of the units. Questions about the proportions of HED-like rock and the constituent called neutral phase remain open. Spectrophotometric studies of Vesta with both higher spatial and spectral resolution as expected from NASA’s Dawn mission are needed for resolving these problems.  相似文献   
22.
太湖蓝藻中天然色素的分离提取及测定   总被引:11,自引:2,他引:9  
瞿文川  潘红玺 《湖泊科学》1997,9(3):284-285
本文对太湖蓝藻中的叶绿素,胡萝卜素,藻蓝素等天然色素进行分离提以,并运用紫外可见分光光度法对色素含量进行测定;最后对色素在食品,化妆品等方面的应用进行了初步探讨。  相似文献   
23.
《地学前缘(英文版)》2020,11(6):2197-2205
This study investigates the suitability of statistical techniques for evaluating the fluoride content and the groundwater quality from Robles Department (RD) and Banda Department (BD) in Santiago del Estero (Argentina). For the original statistical study, evaluation of nine parameters (fluoride, pH, conductivity, atmospheric and water temperature, total dissolved solids, chloride, hardness, and alkalinity) of 110 collected underground water samples from 23 dispersed rural areas was proposed. Groundwater samples were obtained by sampling taken from wells at different depths. Fluoride levels were determined by a standard colorimetric method in two seasonal periods, the dry (from April to September) and rainy (from October to March) period. The analytical results obtained for physicochemical parameters such as pH, total dissolved solids (TDS), and temperature does not reveal any notable difference between the rainy and dry seasons studied. In both seasons, the atmospheric temperature average was 22 ​°C. With respect to fluoride content, approximately 50% of the analysed groundwater samples exceeded the limit established by current legislation (1.0 ​mg/L), obtaining concentration levels in the range of 0.01–2.80 ​mg/L. This study demonstrates the usefulness of the univariate statistical method (quartiles calculation, interquartile range IQR), multivariate principal component analysis (PCA), and cluster analysis to establish a better understanding of the state of the contamination of the waters in the region studied.  相似文献   
24.
Hubble Space Telescope (HST) Wide-Field Planetary Camera (WFPC2) observations at phase angles in the range α=0.26°-6.4° obtained at every opposition and near quadrature between October 1996 and December 2002 reveal the opposition effect of Enceladus. We present a photometric analysis of nearly 200 images obtained through the five broadband UVBRI filters (F336W, F439W, F555W, F675W, and F814W) and the F785LP and F1042M filters from which we generate mutually consistent solar and rotational phase curves. Our solar phase curves reveal a dramatic, sharp increase in the albedo (from 0.11 mag in the F675W filter to 0.17 mag in the F785LP filter) as phase angles decrease from 2° to 0.26°. A slight opposition effect is evident in data from the F1042M filter (λeff=1022 nm); however, the smallest phase angle currently available for observations from this filter is α=0.58°. With the addition of data from the F255W filter we demonstrate the wavelength dependence of the albedo of the trailing hemisphere from 275 to 1022 nm. Our rotation curves show that the trailing hemisphere is ∼0.06 mag brighter than the leading when observed at wavelengths between 338 and 868 nm and 0.11 mag brighter than the leading at 1022 nm. We have supplemented the phase curve from the F439W filter (λeff=434 nm) with Voyager clear filter (λeff=480 nm) observations made at larger phase angles (α=13°-43°) to produce a phase curve with the most extensive phase angle coverage possible to date. This newly expanded range of phase angles enhances the ability of the Hapke photometric model (Hapke B., 2002, Icarus 157, 523-534) to relate physical characteristics of the surface of Enceladus to the manner in which incident light is reflected from it. We present Hapke 2002 model fits to solar phase curves from each UVBRI filter as well as from the F785LP and F1042M filters. Geometric albedos derived from these model fits range from p=0.92±0.01 at 1022 nm to p=1.41±0.03 at 549 nm, necessitating an increase of about 20% from previously derived values. Our Hapke fits demonstrate that the opposition surge of Enceladus is best described by a model which combines both moderate shadow-hiding and narrow coherent backscattering components.  相似文献   
25.
Hale-Bopp (C/1995 O1) was the most productive recent comet observed in terms of gas and dust output. Since its discovery in 1995 at a distance of 7.14 AU from the Sun, the comet has been well observed, revealing the dynamics of a rare and large comet. Hale-Bopp showed strong emissions of the principle cometary gases CN, C3, and C2, as well as an abundance of dust. The production rates of these gases were found to be 1.45×1028, 1.71×1028, and , respectively, with dust production, in terms of Afρ, , as measured in the green continuum (5260 Å). The observations for this paper are presented in two groups spanning 10 days each, one group centered near 32 days prior to and the other 21 days after perihelion. The averages of dust and gas production rates show a slightly higher value for each prior to perihelion than after perihelion, consistent with a possible peak in production a few weeks prior to perihelion passage.  相似文献   
26.
We present color ratio curves of the S-Asteroid 15 Eunomia, which have been extracted from high-precision photometric lightcurves obtained in three different VNIR wavelength bands at the Bochum Telescope, La Silla. The measured color ratio curves and near infrared spectra were used to derive a detailed surface composition model whose shape has been computed by V-lightcurve inversions. According to this analysis, the asteroid shows on one hemisphere a higher concentration of pyroxene, which causes an increased 440/700 nm and a reduced 940/700 nm reflectance ratio as well as a pronounced 2-μm absorption band. The remaining surface shows a higher concentration of olivine, leading to a reduced 440/700 nm and slightly increased 940/700 nm color ratio. In addition, we found that the maximum of the 440/700 nm color ratio curve coincide with the minimum of the 940/700 nm color ratio curve and vice versa. We demonstrate on the basis of USGS laboratory spectra that this anti-cyclical behavior can be explained by choosing Fe-rich olivine and a pyroxene with moderate Fe content as varying mineral phases. Furthermore, our observations confirm that 15 Eunomia is an irregular elongated and at least partially differentiated body. Previous spectral investigations of several smaller fragments of the Eunomia asteroid family revealed that the amount of fragments showing an increased pyroxene content exceeds the amount of pyroxene-poor fragments (Nathues, 2000, DLR Forschungsbericht, ISSN 1434-8454). This finding together with the observation that the major fraction of Eunomia's surface is enriched in olivine let us claim that a large fraction of the original pyroxene-enriched crust layer has been lost due to a major collision that created the Eunomia asteroid family. Significant spectral evidences, consistent with high concentrations of metals have been found neither in the rotational resolved spectra of 15 Eunomia nor in its fragments. This led to the conclusion that either no core consisting mainly of metals exists or that an eventual one has not been unearthed by the impact.  相似文献   
27.
L.A. Sromovsky 《Icarus》2005,173(1):284-294
Solar radiation reflected by the atmospheres of Neptune and Uranus is dominated by Rayleigh scattering at visible wavelengths, and thus subject to the effects of polarization. Ignoring these effects can lead to errors in reflected intensity of more than 9% in a clear atmosphere. But solving the full vector equation of transfer is computationally very costly, forcing approximations with limitations that are not well understood and not generally applicable to spatially resolved observations and complex atmospheric structures. Using accurate vector radiation transfer calculations, it is here shown that differences between vector and scalar results near zero phase angle have systematic dependencies on optical depth, single scattering albedo, and angle, that provide a basis for accurate approximation of the reflected intensities. With little computational cost, it is possible to calculate corrected spatially resolved scalar intensities that closely match vector intensities, with individual errors rarely exceeding 1%, and mean and RMS errors generally within a few tenths of 1%. The correction method accounts for the attenuating effects of clouds and molecular absorption.  相似文献   
28.
L.A. Sromovsky  P.G.J. Irwin 《Icarus》2006,182(2):577-593
Near-IR absorption of methane in the 2000-9500 cm−1 spectral region plays a major role in outer planet atmospheres. However, the theoretical basis for modeling the observations of reflectivity and emission in these regions has had serious uncertainties at temperatures needed for interpreting observations of the colder outer planets. A lack of line parameter information, including ground-state energies and the absence of weak lines, limit the applicability of line-by-line calculations at low temperatures and for long path lengths, requiring the use of band models. However, prior band models have parameterized the temperature dependence in a way that cannot be accurately extrapolated to low temperatures. Here we use simulations to show how a new parameterization of temperature dependence can greatly improve band model accuracy and allow extension of band models to the much lower temperatures that are needed to interpret observations of Uranus, Neptune, Titan, and Saturn. Use of this new parameterization by Irwin et al. [Irwin, P.G.J., Sromovsky, L.A., Strong, E.K., Sihra, K., Bowles, N., Calcutt, S.B., 2005b. Icarus. In press] has verified improved fits to laboratory observations of Strong et al. [Strong, K., Taylor, F.W., Calcutt, S.B., Remedios, J.J., Ballard, J., 1993. J. Quant. Spectrosc. Radiat. Trans. 50, 363-429] and Sihra [1998. Ph.D. Thesis, Univ. of Oxford], which cover the temperature range from 100 to 340 K. Here we compare model predictions to 77 K laboratory observations and to Uranus spectra, which show much improved agreement between observed and modeled spectral features, allowing tighter constraints on pressure levels of Uranus cloud particles, implying that most scattering contributions arise from pressures near 2 bars and 6 bars rather than expected pressures near 1.25 and 3.1 bars. Between visible and near-IR wavelengths, both cloud layers exhibit strong decreases in reflectivity that are indicative of low opacity and submicron particle sizes.  相似文献   
29.
We present individual spectra 0.8-2.5 μm of the leading and trailing hemispheres of Enceladus obtained with the CorMASS spectrograph on the 1.8 m Vatican Advanced Technology Telescope (VATT) at the Mount Graham International Observatory. While the absorption bands of water ice dominate the spectrum of both hemispheres, most of these bands are stronger on the leading hemisphere than the trailing hemisphere. In addition, longward of 1 μm, the continuum slope is greater on the leading hemisphere than the trailing hemisphere. These differences could be produced by the presence of particles on the trailing side that are smaller and/or microstructurally more complex than those on the leading side, consistent with the preferential erosion or structural degradation of regolith particle grains on the trailing side by magnetospheric sweeping. We also explore compositional differences between the two hemispheres by applying Hapke spectrophotometric mixture models to the spectra whose components include water ice and ammonia hydrate (1% NH3⋅H2O). We find that spectral models which include as much as 25% by weight ammonia hydrate intimately mixed with water ice and covering 80% of the illuminated area of the satellite fit the observed spectrum of both the leading and trailing hemispheres. Areal (checkerboard) mixing models of ammonia hydrate and water ice fit the leading hemisphere with 15% of the surface comprised of ammonia hydrate and the trailing hemisphere with 10% ammonia hydrate. Therefore, while these spectral data do not contain an unambiguous detection of ammonia hydrate on Enceladus, our spectral models do not preclude the presence of a modest amount of 1% NH3⋅H2O on both hemispheres. We examine spectral differences and similarities between both hemispheres and the tenuous E ring within which Enceladus orbits. The spectral resolution (R=λλ) of these CorMASS data (R∼300) is comparable to but nevertheless higher than that of the Visual-Infrared Mapping Spectrometer (VIMS) (R=225) onboard the Cassini spacecraft.  相似文献   
30.
Faint absorption bands in the visible range of the smoothed vestoid spectra have been found. The bands centered near 505, 530, and 550 nm are attributed to ferrous iron in low-calcium pyroxene and are typical for pyroxene-bearing vestoid surfaces. In accordance with characteristics of the faint absorption bands around 600 and 650 nm the studied vestoid spectra can be sorted into five types. Since the same absorptions are also seen in the laboratory spectra of the minerals and meteorites, which appear to be similar to vestoid material, spectral types of the vestoids can be related to their surface compositions. Regolith of the Type-I vestoids consists of pure low-calcium pyroxenes. Minor amount of olivine along with pyroxene appear to be on the Type-II vestoids whereas the mixtures of low-calcium pyroxene with minor chromite define the Type-III and -IV. The causes for the fifth spectral type in terms of minor mineral phases are unclear now. Simulation of the spectra of vestoids was employed to estimate content of olivine (∼6-12 vol%) and chromite (∼12-30 vol%) on their surfaces.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号