全文获取类型
收费全文 | 5200篇 |
免费 | 528篇 |
国内免费 | 338篇 |
专业分类
测绘学 | 101篇 |
大气科学 | 125篇 |
地球物理 | 2394篇 |
地质学 | 1475篇 |
海洋学 | 402篇 |
天文学 | 20篇 |
综合类 | 161篇 |
自然地理 | 1388篇 |
出版年
2024年 | 52篇 |
2023年 | 116篇 |
2022年 | 185篇 |
2021年 | 193篇 |
2020年 | 185篇 |
2019年 | 196篇 |
2018年 | 185篇 |
2017年 | 187篇 |
2016年 | 210篇 |
2015年 | 198篇 |
2014年 | 267篇 |
2013年 | 297篇 |
2012年 | 245篇 |
2011年 | 253篇 |
2010年 | 212篇 |
2009年 | 281篇 |
2008年 | 260篇 |
2007年 | 315篇 |
2006年 | 277篇 |
2005年 | 214篇 |
2004年 | 213篇 |
2003年 | 184篇 |
2002年 | 164篇 |
2001年 | 111篇 |
2000年 | 127篇 |
1999年 | 119篇 |
1998年 | 169篇 |
1997年 | 113篇 |
1996年 | 108篇 |
1995年 | 87篇 |
1994年 | 89篇 |
1993年 | 82篇 |
1992年 | 67篇 |
1991年 | 23篇 |
1990年 | 25篇 |
1989年 | 14篇 |
1988年 | 12篇 |
1987年 | 6篇 |
1986年 | 8篇 |
1985年 | 6篇 |
1984年 | 7篇 |
1983年 | 2篇 |
1979年 | 1篇 |
1977年 | 1篇 |
排序方式: 共有6066条查询结果,搜索用时 31 毫秒
31.
Matthew E. Kirby Christopher J. Poulsen Steve P. Lund William P. Patterson Liam Reidy Douglas E. Hammond 《Journal of Paleolimnology》2004,31(3):275-293
Southern California faces an imminent freshwater shortage. To better assess the future impact of this water crisis, it is essential that we develop continental archives of past hydrological variability. Using four sediment cores from Lake Elsinore in Southern California, we reconstruct late Holocene (3800 calendar years B.P.) hydrological change using a twentieth-century calibrated, proxy methodology. We compared magnetic susceptibility from Lake Elsinore deep basin sediments, lake level from Lake Elsinore, and regional winter precipitation data over the twentieth century to calibrate the late Holocene lake sediment record. The comparison revealed a strong positive, first-order relationship between the three variables. As a working hypothesis, we suggest that periods of greater precipitation produce higher lake levels. Greater precipitation also increases the supply of detritus (i.e., magnetic-rich minerals) from the lake's surrounding drainage basin into the lake environment. As a result, magnetic susceptibility values increase during periods of high lake level. We apply this modern calibration to late Holocene sediments from the lake's littoral zone. As an independent verification of this hypothesis, we analyzed 18O(calcite), interpreted as a proxy for variations in the precipitation:evaporation ratio, which reflect first order hydrological variability. The results of this verification support our hypothesis that magnetic susceptibility records regional hydrological change as related to precipitation and lake level. Using both proxy data, we analyzed the past 3800 calendar years of hydrological variability. Our analyses indicate a long period of dry, less variable climate between 3800 and 2000 calendar years B.P. followed by a wet, more variable climate to the present. These results suggest that droughts of greater magnitude and duration than those observed in the modern record have occurred in the recent geological past. This conclusion presents insight to the potential impact of future droughts on the over-populated, water-poor region of Southern California. 相似文献
32.
乌梁素海水体汞的分布特征及污染风险评估 总被引:2,自引:2,他引:2
于2011年1月采集乌梁素海表层水样,对湖水中重金属Hg含量进行分析.结合Hg的空间分布特征,利用单因子指数综合污染评价指数与健康风险评价模型对Hg污染程度与风险进行评估.结果表明,乌梁素海表层水体中Hg的平均浓度为1.04μg/L,所有监测点Hg的含量都超出地表水Ⅲ类标准和国家渔业用水标准,50%的监测点超出了地表水Ⅳ类标准.水体中Hg的分布模式与流域排污口位置、入湖口及水动力条件有一定关系,高值区域分布在入湖口相对集中的西北与东北部,湖泊南部与出口处的含量相对较低,处于中等水平.乌梁素海湖水中Hg的非致癌性污染物所致的健康危害风险度介于0.75×10-9~2.15×10-9a-1之间,Hg所致的健康危害风险度的贡献率在71.43%~92.44%之间,表明Hg污染水平与健康风险都较高,应该给予特别关注. 相似文献
33.
为了研究东台吉乃尔盐湖卤水蒸发时的相化学,确定钾、镁和锂盐的结晶特性,在实验室内25℃等温蒸发实验基础上和自然条件下进行了冬夏季日晒蒸发试验.东台吉乃尔盐湖卤水是由氯化钠饱和的多组分复杂体系构成的.卤水中存在的离子是Na+、K+、Mg2+、Li+、Ca2+、B3+、SO42-和Cl-.试验数据与Na+、K+、Mg2+Cl-、SO42-KH2O五元体系介稳平衡数据进行了讨论和比较.Autenrieth相图被用来表示各数据间的关系和证明冬夏季蒸发时结晶行为的差别. 相似文献
34.
近60年洞庭湖泊形态与水沙过程的互动响应 总被引:2,自引:0,他引:2
以历史文献、图件及1951~2009年长系水沙等资料为依据,对比分析洞庭湖形态与水沙过程的互动响应,结果表明:由于湖泊形态与水沙过程存在着相互作用的关系,近60年间,水沙过程以多种形式改变湖泊形态特征值,如湖盆结构破碎、解体,水深变浅以及湖面﹑湖容依次减少1840km2及130×108 m3;同时湖泊形态特征值改变也引起水沙特性变异,在1951~2002年间湖盆蓄水量呈明显的增减波动,但同流量下汛期水位普遍抬高1.2~1.90m,西﹑南﹑东洞庭湖水位变幅依次增大1.61m、1.39m和1.35m,各主要水文站前5位最高洪水位排序的年份均出现在湖面积(容积)历史最低值,泥沙淤积率为70%以上;2003年6月三峡水库蓄水及"退田还湖"后,高、中水位下湖盆调蓄量有所减少,城陵矶丰、枯水位分别降低1.12m及0.35m,西湖区与东南湖区的泥沙输出比均呈增大趋势,泥沙淤积率减至35.9%。其互动响应机制,可概化为泥沙淤积循环→湖盆结构破碎、解体,湖面湖容缩小→水沙特性异变→改变湖泊形态→水沙特性变异的互动响应动态演进模式。 相似文献
35.
The uppermost 50 cm of sediments from the 23 m deep lacustrine basin of Nurmijärvi, a lake in south-central Finland, are composed of the clastic-biogenic type of varves. We use multiple dating methods to render a sediment chronology that is as precise and accurate as possible for future paleoenvironmental research on this high-fidelity sedimentary archive. The 250-year-long varve chronology contains a chronological error of ±2%, as estimated based on repeated varve counts. The varve-based chronology was verified with the vertical distribution of 137Cs by comparing variations in the paleomagnetic relative declination of the surface sediments with instrumental observations and a calculated representation of declination features in Finland. A comparison of the sediment cesium content using two gamma counters, different sediment pretreatments, and normalization of the 137Cs concentration with masses and accumulation rates of different sediment components revealed that the AD 1986 fallout peak from the Chernobyl accident is the dominant feature in the studied sediments, regardless of the sample pretreatment or normalizing procedure. The vertical distribution of the AD 1986 peak in sediments with clastic-biogenic varves is fairly narrow, thus providing an accurate age-depth marker for the recent deposits. However, the Nurmijärvi section also reveals a ca. 10-year-long period of catchment-to-basin 137Cs mobilization and redeposition after the AD 1986 fallout, as well as significant downwards diffusion of the Chernobyl-derived cesium in the sediment. This study highlights the ways in which the quality of surface sediment chronology needs to be considered and secured prior to comparisons between paleoproxy records and instrumental observations. 相似文献
36.
ShiQiao Zhou 《寒旱区科学》2020,12(6):430-435
Tibetan lake levels are sensitive to global change, and their variations have a large impact on the environment, local agriculture and animal husbandry practices. While many remote sensing data of Tibetan lake level changes have been reported, few are from in-situ measurements. This note presents the first in-situ lake level time series of the central Tibetan Plateau. Since 2005, daily lake level observations have been performed at Lake Nam Co, one of the largest on the Tibetan Plateau. The interannual lake level variations show an overall increasing trend from 2006 to 2014, a rapid decrease from 2014 to 2017, and a surge from 2017 to 2018. The annual average lake level of the hydrological year (May-April) rose 66 cm from 2006 to 2014, dropped 59 cm from 2014 to 2017, and increased 20 cm from 2017 to 2018, resulting in a net rise of 27 cm or an average rate of about 2 cm per year. Compared to the annual average lake level based on the calendar year, it is better to use the annual average lake level based on the hydrological year to determine the interannual lake level changes. As the lake level was stable in May, it is appropriate to compare May lake levels when examining interannual lake level changes with fewer data. Overall, remote sensing results agree well with the in-situ lake level observations; however, some significant deviations exist. In the comparable 2006-2009 period, the calendar-year average lake level observed in-situ rose by 10-11 cm per year, which is lower than the ICESat result of 18 cm per year. 相似文献
37.
38.
The opening of the Bonnet Carré spillway to prevent flood threat to New Orleans in April 2008 created a sediment plume in the Lake Pontchartrain. The nutrient rich plume triggered a massive algal bloom in the lake. In this article, we have quantified the spatio-temporal distribution of the plume (suspended solids) and the bloom (chlorophyll-a (chl-a)) in the lake using remotely-sensed data. We processed the Moderate-resolution Imaging Spectroradiometer satellite data for mapping the total suspended solids (TSS) and chl-a concentrations. An existing algorithm was used for estimating TSS whereas a novel slope model was developed to predict the per-pixel chl-a concentration. Both algorithms were successful in capturing the spatio-temporal trend of TSS and chl-a concentrations, respectively. Algal growth was found to be inversely related to TSS concentrations and a time lag of ~45 days existed between the spillway opening and the appearance of the first algal bloom at an observation location. 相似文献
39.
40.
Emmanuelle Vennin Anthony Bouton Raphaël Bourillot Aurlie Pace Adeline Roche Arnaud Brayard Christophe Thomazo Aurelien Virgone Eric C. Gaucher Guy Desaubliaux Pieter T. Visscher 《Sedimentology》2019,66(1):165-204
The Bonneville Basin is a continental lacustrine system accommodating extensive microbial carbonate deposits corresponding to two distinct phases: the deep Lake Bonneville (30 000 to 11 500 14C bp ) and the shallow Great Salt Lake (since 11 500 14C bp ). A characterization of these microbial deposits and their associated sediments provides insights into their spatio‐temporal distribution patterns. The Bonneville phase preferentially displays vertical distribution of the microbial deposits resulting from high‐amplitude lake level variations. Due to the basin physiography, the microbial deposits were restricted to a narrow shoreline belt following Bonneville lake level variations. Carbonate production was more efficient during intervals of relative lake level stability as recorded by the formation of successive terraces. In contrast, the Great Salt Lake microbial deposits showed a great lateral distribution, linked to the modern flat bottom configuration. A low vertical distribution of the microbial deposits was the result of the shallow water depth combined with a low amplitude of lake level fluctuations. These younger microbial deposits display a higher diversity of fabrics and sizes. They are distributed along an extensive ‘shore to lake’ transect on a flat platform in relation to local and progressive accommodation space changes. Microbial deposits are temporally discontinuous throughout the lake history showing longer hiatuses during the Bonneville phase. The main parameters controlling the rate of carbonate production are related to the interaction between physical (kinetics of the mineral precipitation, lake water temperature and runoff), chemical (Ca2+, Mg2+ and HCO3? concentrations, Mg/Ca ratio, dilution and depletion) and/or biological (trophic) factors. The contrast in evolution of Lake Bonneville and Great Salt Lake microbial deposits during their lacustrine history leads to discussions on major chemical and climatic changes during this interval as well as the role of physiography. Furthermore, it provides novel insights into the composition, structure and formation of microbialite‐rich carbonate deposits under freshwater and hypersaline conditions. 相似文献