首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8592篇
  免费   1415篇
  国内免费   2985篇
测绘学   288篇
大气科学   484篇
地球物理   2058篇
地质学   6972篇
海洋学   375篇
天文学   12篇
综合类   412篇
自然地理   2391篇
  2024年   56篇
  2023年   160篇
  2022年   353篇
  2021年   421篇
  2020年   471篇
  2019年   491篇
  2018年   468篇
  2017年   356篇
  2016年   484篇
  2015年   505篇
  2014年   640篇
  2013年   684篇
  2012年   589篇
  2011年   660篇
  2010年   591篇
  2009年   634篇
  2008年   635篇
  2007年   628篇
  2006年   719篇
  2005年   515篇
  2004年   483篇
  2003年   417篇
  2002年   394篇
  2001年   309篇
  2000年   255篇
  1999年   201篇
  1998年   182篇
  1997年   152篇
  1996年   144篇
  1995年   78篇
  1994年   68篇
  1993年   54篇
  1992年   53篇
  1991年   37篇
  1990年   26篇
  1989年   21篇
  1988年   16篇
  1987年   9篇
  1986年   8篇
  1985年   6篇
  1984年   6篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
  1973年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
刘敬勇  常向阳 《地球化学》2009,38(3):251-261
利用元素总量和Pb同位素示踪技术对广东云浮硫酸厂含Tl黄铁矿冶炼堆渣场周围土壤中Tl的污染程度和迁移行为进行了研究。研究发现堆渣场周围土壤中Tl污染物主要集中于表层土壤约16.5cm深度内,并且表现出沿垂直方向向下迅速下降的特点。堆渣场周围土壤中Tl与Pb呈显著线性相关,表明自然条件下田与Pb在土壤中的迁移相似性,并且都以横向迁移为主。堆渣场固结层周围土壤至少44cm范围已经受到废渣中Tl释放的影响,Tl污染物平均下渗速率达到2.75cm/a。酸性雨水的淋滤作用及废渣自身不断酸化的特性是废渣中.Tl迁移释放入土壤的主要因素,土壤铁氧化物胶体及有机质是土壤对Tl产生吸附的主要载体。  相似文献   
992.
李社宏 《地质与勘探》2009,45(4):358-366
瑶岭钨矿由北矿区、东矿区和白基寨矿区3个矿区组成,其中北矿区是主要生产矿区,以石英脉型黑钨矿为主.在对北矿区大比例尺填图过程中,我们发现矿区地表地层单一,主要为寒武纪沉积的变质砂岩和板岩.针时这种情况,我们采用土壤地球化学测量、物探磁法测量、钻探等工程方法对寒武纪地层进行研究,综合分析了矿区地质特征、地球物理磁法特征及地球化学特征在对矿脉水平分布、矿脉垂直分布、蚀变矿物因素、构造因素、热接触因素和成矿因素的外在表现,从而建立起矿区寒武纪地层对矿化的指示体系表,并指出瑶岭钨矿北区深部和东南部有很大的找矿潜力,是值得继续找矿的有利目标地段.  相似文献   
993.
Similar to vascular plants, non-vascular plant mosses have different periods of seasonal growth. There has been little research on the spectral variations of moss soil crust (MSC) over different growth periods. Few studies have paid attention to the difference in spectral characteristics between wet MSC that is photosynthesizing and dry MSC in suspended metabolism. The dissimilarity of MSC spectra in wet and dry conditions during different seasons needs further investigation. In this study, the spectral reflectance of wet MSC, dry MSC and the dominant vascular plant (Artemisia) were characterized in situ during the summer (July) and autumn (September). The variations in the normalized difference vegetation index (NDVI), biological soil crust index (BSCI) and CI (crust index) in different seasons and under different soil moisture conditions were also analyzed. It was found that (1) the spectral characteristics of both wet and dry MSCs varied seasonally; (2) the spectral features of wet MSC appear similar to those of the vascular plant, Artemisia, whether in summer or autumn; (3) both in summer and in autumn, much higher NDVI values were acquired for wet than for dry MSC (0.6  0.7 vs. 0.3  0.4 units), which may lead to misinterpretation of vegetation dynamics in the presence of MSC and with the variations in rainfall occurring in arid and semi-arid zones; and (4) the BSCI and CI values of wet MSC were close to that of Artemisia in both summer and autumn, indicating that BSCI and CI could barely differentiate between the wet MSC and Artemisia.  相似文献   
994.
Insects are the largest and most diverse group of living organisms on Earth, playing a critical but underestimated role as agents of geomorphic change. Burrowing insects create micro-scale landforms such as subterranean tunnels and surface mounds and, by this way, exert an influence on hydrology, soil erosion and sediment transfer at a wider landscape scale. However, social insects represented by ants and termites were the main taxa studied as geomorphic agents and ecosystem engineers. This article proposes an extended and critical literature review of insects as zoogeomorphic agents, with reference to various taxonomic orders and families of insects having a burrowing behaviour. It provides a large overview of their primary and secondary impacts on Earth surface systems, both supported by naturalistic evidence and available quantitative data. Some evolutionary insights are discussed based on fossil evidence of geomorphic work by insects and, at finer temporal scale, on recent advances in radiometric and luminescence dating of insect mounds. Finally, this article explores the fruitful links between geomorphology and entomology, and suggests several research perspectives in order to develop an integrated understanding of the importance of insects in Earth surface processes and landforms. © 2020 John Wiley & Sons, Ltd.  相似文献   
995.
The Qinghai–Tibet Plateau has a vast area of approximately 70×104 km2 of alpine meadow under the impacts of soil freezing and thawing, thereby inducing intensive water erosion. Quantifying the rainfall erosion process of partially thawed soil provides the basis for model simulation of soil erosion on cold-region hillslopes. In this study, we conducted a laboratory experiment on rainfall-induced erosion of partially thawed soil slope under four slope gradients (5, 10, 15, and 20°), three rainfall intensities (30, 60, and 90 mm h−1), and three thawed soil depths (1, 2, and 10 cm). The results indicated that shallow thawed soil depth aggravated soil erosion of partially thawed soil slopes under low hydrodynamic conditions (rainfall intensity of 30 mm h−1 and slope gradient ≤ 15°), whereas it inhibited erosion under high hydrodynamic conditions (rainfall intensity ≥ 60 mm h−1 or slope gradient > 15°). Soil erosion was controlled by the thawed soil depth and runoff hydrodynamic conditions. When the sediment supply was sufficient, the shallow thawed soil depth had a higher erosion potential and a larger sediment concentration. On the contrary, when the sediment supply was insufficient, the shallow thawed soil depth resulted in lower sediment erosion and a smaller sediment concentration. The hydrodynamic runoff conditions determined whether the sediment supply was sufficient. We propose a model to predict sediment delivery under different slope gradients, rainfall intensities, and thawed soil depths. The model, with a Nash–Sutcliffe efficiency of 0.95, accurately predicted the sediment delivery under different conditions, which was helpful for quantification of the complex feedback of sediment delivery to the factors influencing rainfall erosion of partially thawed soil. This study provides valuable insights into the rainfall erosion mechanism of partially thawed soil slopes in the Qinghai–Tibet Plateau and provides a basis for further studies on soil erosion under different hydrodynamic conditions.  相似文献   
996.
A commonly used measure to prevent soil wind erosion is to cover the surface with gravel. Gravel can inhibit soil erosion by covering the surface directly, changing the airflow field near the surface and sharing the shear stress of wind. Similar to other roughness elements, the protective effect of gravel on soil is usually expressed in terms of the ratio of the shear stress on the exposed soil surface to the total shear stress on the rough surface due to wind, i.e. through a shear-stress partitioning model. However, the existing shear-stress partitioning models, represented by Raupach's model (RM93), are only applicable when the lateral coverage of the roughness elements, λ < 0.10, and the applicability of the models to flat-shaped roughness elements is unclear. The purpose of this study is to verify the applicability of RM93 for dense and flat-shaped gravel roughness elements by using shear-stress data from wind-tunnel measurements pertaining to roughness elements with different densities (0.013 ≤ λ ≤ 0.318) and flat shapes (height-to-width ratios in the range 0.20 ≤ H/W ≤ 0.63), and to modify RM93 to enhance its predictive ability. The results indicate that RM93 cannot accurately predict the shear-stress partitioning for surfaces covered by densely distributed and flat-shaped gravel roughness elements. This phenomenon occurs because, when roughness elements are distributed densely or are flat-shaped, the proportion of the shear stress on the top surface of the roughness elements (τc) to the total shear stress (τ) is large; in this case, τc plays a dominant role and serves as an essential component in the shear-stress partitioning model. Consequently, RM93 is modified by incorporating τc into the calculation of τ. Under conditions of λ < 0.32 and H/W > 0.2, the modified RM93 can yield satisfactory predictions regarding the shear-stress partitioning.  相似文献   
997.
Field measurement and modelling of soil erosion provides insights into landscape systems as well as the potential for enhanced landscape management. There are a number of field and numerical methods by which soil erosion and deposition can be quantified. Here we examine the capability of the SIBERIA landscape evolution model to quantify short-term erosion and deposition on a well-managed cattle grazing landscape on the east coast of Australia. The model is calibrated by two methods (1) a geomorphological approach using a site digital elevation model (DEM) and soil data and (2) a laboratory-scale flume. The two calibration processes resulted in similar model input parameters and estimated erosion rates of 3.1 t ha−1 year−1 and 4.4 t ha−1 year−1, respectively. These were found to closely match erosion rates estimated using the environmental tracer 137Cs (2.7–4.8 t ha−1 year−1). However, erosion and deposition estimated at individual points along the hillslope was not well correlated with 137Cs at the same position due to the temporal averaging of the model and microtopography. Sensitivity analysis showed the model was more sensitive to parameterisation than sub-DEM-scale topography. This places confidence in the model's ability to estimate erosion and deposition across an entire hillslope and catchment on decadal time scales. We also highlight the robustness and flexibility of the calibration methods.  相似文献   
998.
999.
The ecosystem services provided by forests modulate runoff generation processes, nutrient cycling and water and energy exchange between soils, vegetation and atmosphere. Increasing atmospheric CO2 affects many linked aspects of forest and catchment function in ways we do not adequately understand. Global levels of atmospheric CO2 will be around 40% higher in 2050 than current levels, yet estimates of how water and solute fluxes in forested catchments will respond to increased CO2 are highly uncertain. The Free Air CO2 Enrichment (FACE) facility of the University of Birmingham's Institute of Forest Research (BIFoR) is the only FACE in mature deciduous forest. The site specializes in fundamental studies of the response of whole ecosystem patches of mature, deciduous, temperate woodland to elevated CO2 (eCO2). Here, we describe a dataset of hydrological parameters – seven weather parameters at each of three heights and four locations, shallow soil moisture and temperature, stream hydrology and CO2 enrichment – retrieved at high frequency from the BIFoR FACE catchment.  相似文献   
1000.
The drought of summer 2018, which affected much of Northern Europe, resulted in low river flows, biodiversity loss and threats to water supplies. In some regions, like the Scottish Highlands, the summer drought followed two consecutive, anomalously dry, winter periods. Here, we examine how the drought, and its antecedent conditions, affected soil moisture, groundwater storage, and low flows in the Bruntland Burn; a sub-catchment of the Girnock Burn long-term observatory in the Scottish Cairngorm Mountains. Fifty years of rainfall-runoff observations and long-term modelling studies in the Girnock provided unique contextualisation of this extreme event in relation to more usual summer storage dynamics. Whilst summer precipitation in 2018 was only 63% of the long-term mean, soil moisture storage across much of the catchment were less than half of their summer average and seasonal groundwater levels were 0.5 m lower than normal. Hydrometric and isotopic observations showed that ~100 mm of river flows during the summer (May-Sept) were sustained almost entirely by groundwater drainage, representing ~30% of evapotranspiration that occurred over the same period. A key reason that the summer drought was so severe was because the preceding two winters were also dry and failed to adequately replenish catchment soil moisture and groundwater stores. As a result, the drought had the biggest catchment storage deficits for over a decade, and likely since 1975–1976. Despite this, recovery was rapid in autumn/winter 2018, with soil and groundwater stores returning to normal winter values, along with stream flows. The study emphasizes how long-term data from experimental sites are key to understanding the non-linear flux-storage interactions in catchments and the “memory effects” that govern the evolution of, and recovery from, droughts. This is invaluable both in terms of (a) giving insights into hydrological behaviours that will become more common water resource management problems in the future under climate change and (b) providing extreme data to challenge hydrological models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号