Most amplitude versus offset (AVO) analysis and inversion techniques are based on the Zoeppritz equations for plane‐wave reflection coefficients or their approximations. Real seismic surveys use localized sources that produce spherical waves, rather than plane waves. In the far‐field, the AVO response for a spherical wave reflected from a plane interface can be well approximated by a plane‐wave response. However this approximation breaks down in the vicinity of the critical angle. Conventional AVO analysis ignores this problem and always utilizes the plane‐wave response. This approach is sufficiently accurate as long as the angles of incidence are much smaller than the critical angle. Such moderate angles are more than sufficient for the standard estimation of the AVO intercept and gradient. However, when independent estimation of the formation density is required, it may be important to use large incidence angles close to the critical angle, where spherical wave effects become important. For the amplitude of a spherical wave reflected from a plane fluid‐fluid interface, an analytical approximation is known, which provides a correction to the plane‐wave reflection coefficients for all angles. For the amplitude of a spherical wave reflected from a solid/solid interface, we propose a formula that combines this analytical approximation with the linearized plane‐wave AVO equation. The proposed approximation shows reasonable agreement with numerical simulations for a range of frequencies. Using this solution, we constructed a two‐layer three‐parameter least‐squares inversion algorithm. Application of this algorithm to synthetic data for a single plane interface shows an improvement compared to the use of plane‐wave reflection coefficients. 相似文献
遥感卫星的多光谱数据应用于找矿已取得显著成效,2004年7月中国卫星地面站开始提供ASTER(Advanced Spaceborne Thermal Emission and Reflection Radiometer,高级星载热发射反照辐射计)数据,因涵盖波长范围宽[VNIR(Visible and Near Infrared)、SWIR(Short wavelength Infrared)、TIR(Thermal Infrared)]、波段多(14个波段)、性价比合理等因素,ASTER数据的研究迅速发展。长久以来,对覆盖区进行蚀变遥感异常信息提取一直是遥感找矿的关注点之一。笔者等利用ASTER数据对浅覆盖区——包古图斑岩铜矿的Ⅱ号、Ⅴ号斑岩体进行蚀变遥感异常提取,提取的蚀变异常与野外地质情况吻合性好。分别提取了光谱特征谱带差异明显的2组蚀变矿物的异常信息:第一组是蒙脱石、埃洛石、伊利石与绢云母;第二组是方解石、黑云母与绿泥石。提出了需要进一步工作的异常靶区。 相似文献
We present a Lagrangian stochastic model of vertical dispersion in the convective boundary layer (CBL). This model is based on a generalized Langevin equation that uses the simplifying assumption that the skewed vertical velocity probability distribution is spatially homogeneous. This approach has been shown to account for two key properties of CBL turbulence associated with large-scale coherent turbulent structures: skewed vertical velocity distributions and long velocity correlation time. A 'linear-skewed' form of the generalized Langevin equation is used, which has a linear (in velocity) deterministic acceleration and a skewed random acceleration. 'Reflection' boundary conditions for selecting a new velocity for a particle that encounters a boundary were investigated, including alternatives to the standard assumption that the magnitudes of the particle incident and reflected velocities are positively correlated. Model simulations were tested using cases for which exact, analytic statistical properties of particle velocity and position are known, i.e., well-mixed spatial and velocity distributions. Simulations of laboratory experiments of CBL dispersion show that (1) the homogeneous linear-skewed Langevin equation model (as well as an alternative 'nonlinear-Gaussian' Langevin equation model) can simulate the important aspects of dispersion in the CBL, and (2) a negatively-correlated-speed reflection boundary condition simulates the observed dispersion of material near the surface in the CBL significantly better than alternative reflection boundary conditions. The homogeneous linear-skewed Langevin equation model has the advantage that it is computationally more efficient than the homogeneous nonlinear-Gaussian Langevin equation model, and considerably more efficient than inhomogeneous Langevin equation models. 相似文献
This paper describes a simple method for determining the wavelength of small amplitude waves under laboratory conditions where reflected wave components are present both with and without a mean current flow superimposed. It assumes a locally horizontal bed but requires no a priori assumption concerning the form of the dispersion relation with a coexisting current. Synchronous measurements of the water surface recorded along any straight line are analysed to yield Fourier coefficients at each location. It is then shown that for all practical conditions excluding a perfect standing wave, the average rate of change of wave phase in the chosen direction can be related directly to the component of incident wave number in that direction, irrespective of reflection coefficient or relative current strength. The technique has been applied to regular and bichromatic waves in a flume with an absorbing wave generator, and can also be applied in 3-D wave basins where waves and currents intersect at arbitrary angles. In combined wave–current experiments, by assuming the linear dispersion relation, it is also possible to estimate the effective current velocity. 相似文献
The purpose of this study is to evaluate the Spectral Angle Mapper (SAM) classification method for determining the optimum threshold (maximum spectral angle) to unveil the hydrothermal mineral assemblages related to mineral deposits. The study area indicates good potential for Cu-Au porphyry, epithermal gold deposits and hydrothermal alteration well developed in arid and semiarid climates, which makes this region significant for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image processing analysis. Given that achieving an acceptable mineral mapping requires knowing the alteration patterns, petrochemistry and petrogenesis of the igneous rocks while considering the effect of weathering, overprinting of supergene alteration, overprinting of hypogene alteration and host rock spectral mixing, SAM classification was implemented for argillic, sericitic, propylitic, alunitization, silicification and iron oxide zones of six previously known mineral deposits: Maherabad, a Cu-Au porphyry system; Sheikhabad, an upper part of Cu-Au porphyry system; Khoonik, an Intrusion related Au system; Barmazid, a low sulfidation epithermal system; Khopik, a Cu-Au porphyry system; and Hanish, an epithermal Au system. Thus, the investigation showed that although the whole alteration zones are affected by mixing, it is also possible to produce a favorable hydrothermal mineral map by such complementary data as petrology, petrochemistry and alteration patterns. 相似文献