首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4406篇
  免费   318篇
  国内免费   459篇
测绘学   70篇
大气科学   195篇
地球物理   966篇
地质学   937篇
海洋学   640篇
天文学   1754篇
综合类   127篇
自然地理   494篇
  2024年   6篇
  2023年   29篇
  2022年   77篇
  2021年   93篇
  2020年   90篇
  2019年   112篇
  2018年   86篇
  2017年   98篇
  2016年   103篇
  2015年   100篇
  2014年   134篇
  2013年   167篇
  2012年   98篇
  2011年   161篇
  2010年   146篇
  2009年   335篇
  2008年   345篇
  2007年   358篇
  2006年   370篇
  2005年   280篇
  2004年   251篇
  2003年   259篇
  2002年   218篇
  2001年   181篇
  2000年   225篇
  1999年   211篇
  1998年   195篇
  1997年   84篇
  1996年   68篇
  1995年   78篇
  1994年   56篇
  1993年   39篇
  1992年   26篇
  1991年   17篇
  1990年   23篇
  1989年   12篇
  1988年   7篇
  1987年   11篇
  1986年   5篇
  1985年   8篇
  1984年   4篇
  1983年   2篇
  1982年   6篇
  1981年   5篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
排序方式: 共有5183条查询结果,搜索用时 9 毫秒
71.
72.
A time series of zooplankton sampling carried out at Station 18 off Concepción (36°S, 73°W) from August 2002 to December 2003 allowed the study of annual life cycles of the copepods Calanus chilensis and Centropages brachiatus in association with environmental variability in the coastal upwelling zone. Changes in the abundance of eggs, nauplii, and copepodids were assessed from samples taken at a mean time interval of ca. 20 days. Upwelling variability in near-surface waters was reflected in seasonal changes in salinity, water column stratification, and oxycline depth, as well as a weak seasonal signal in sea surface temperature (1-2 °C). Both copepods exhibited similar life cycles, characterized by continuous reproduction throughout the year. Estimates of generation times, as a function of temperature, were 25-30 days for C. chilensis and 27-35 days for C. brachiatus, predicting about 12 and 10 generations a year, respectively. These estimates were consistent with reproduction pulses observed in the field. It was thus suggested that copepods may grow under non-limiting food conditions in this upwelling area. However, despite continuous reproduction, there were abrupt changes in population sizes along with the disappearance of early naupliar and copepodid stages taking place even during the upwelling season (spring/summer). These changes were attributed to sudden increases in mortality taking place in spring or early summer, after which the populations remained at low levels through the fall and winter. It is thus suggested that, in addition to variability in the physical environment, biological interactions modulating changes in copepod mortality should be considered for understanding copepod life cycles in highly productive upwelling systems.  相似文献   
73.
This paper presents a Hamiltonian approach to modelling spacecraft motion relative to a circular reference orbit based on a derivation of canonical coordinates for the relative state-space dynamics. The Hamiltonian formulation facilitates the modelling of high-order terms and orbital perturbations within the context of the Clohessy–Wiltshire solution. First, the Hamiltonian is partitioned into a linear term and a high-order term. The Hamilton–Jacobi equations are solved for the linear part by separation, and new constants for the relative motions are obtained, called epicyclic elements. The influence of higher order terms and perturbations, such as Earth’s oblateness, are incorporated into the analysis by a variation of parameters procedure. As an example, closed-form solutions for J2-invariant orbits are obtained.  相似文献   
74.
75.
We present profiles of the line-of-sight (l.o.s.) ionospheric wind velocities in the southern auroral/polar region of Saturn. Our velocities are derived from the measurement of Doppler shifting of the H3+ν2Q(1,0) line at 3.953 microns. The data for this study were obtained using the facility high-resolution spectrometer CSHELL on the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii, during the night of February 6, 2003 (UT). The l.o.s. velocity profiles finally derived are consistent with an extended region of the upper atmosphere sub-corotating with the planet: the ion velocities in the inertial reference are only 1/3 of those expected for full planetary corotation. We discuss the results in the light of recent proposals for the kronian magnetosphere, and suggest that, in this region, Saturn's ion winds may be under solar wind control.  相似文献   
76.
In a previous paper, we developed a technique for estimating the inner eccentricity in coplanar hierarchical triple systems on initially circular orbits, with comparable masses and with well-separated components, based on an expansion of the rate of change of the Runge-Lenz vector. Now, the same technique is extended to non-coplanar orbits. However, it can only be applied to systems with I 0 < 39.23° or I 0 > 140.77°, where I is the inclination of the two orbits, because of complications arising from the so-called ‘Kozai effect’. The theoretical model is tested against results from numerical integrations of the full equations of motion. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
77.
78.
In this paper we analyse the relations between a previously described oblate Jaffe model for an ellipsoidal galaxy and the observed quantities for NGC 2974, and obtain the length and velocity scales for a relevant elliptical galaxy model. We then derive the finite total mass of the model from these scales, and finally find a good fit of an isotropic oblate Jaffe model by using the Gauss-Hermite fit parameters and the observed ellipticity of the galaxy NGC 2974. The model is also used to predict the total luminous mass of NGC 2974, assuming that the influence of dark matter in this galaxy on the image, ellipticity and Gauss-Hermite fit parameters of this galaxy is negligible within the central region, of radius 0.5R e.  相似文献   
79.
We perform a stability test of triaxial models in Modified Newtonian Dynamics (MOND) using N -body simulations. The triaxial models considered here have densities that vary with   r −1  in the centre and   r −4  at large radii. The total mass of the model varies from 108 to  1010 M  , representing the mass scale of dwarfs to medium-mass elliptical galaxies, respectively, from deep MOND to quasi-Newtonian gravity. We build triaxial galaxy models using the Schwarzschild technique, and evolve the systems for 200 Keplerian dynamical times (at the typical length-scale of 1.0 kpc). We find that the systems are virial overheating, and in quasi-equilibrium with the relaxation taking approximately 5 Keplerian dynamical times (1.0 kpc). For all systems, the change of the inertial (kinetic) energy is less than 10 per cent (20 per cent) after relaxation. However, the central profile of the model is flattened during the relaxation and the (overall) axis ratios change by roughly 10 per cent within 200 Keplerian dynamical times (at 1.0 kpc) in our simulations. We further find that the systems are stable once they reach the equilibrium state.  相似文献   
80.
There is an apparent dichotomy between the metal-poor  ([Fe/H]≤−2)  yet carbon-normal giants and their carbon-rich counterparts. The former undergo significant depletion of carbon on the red giant branch after they have undergone first dredge-up, whereas the latter do not appear to experience significant depletion. We investigate this in the context that the extra mixing occurs via the thermohaline instability that arises due to the burning of  3He  . We present the evolution of [C/Fe], [N/Fe] and  12C/13C  for three models: a carbon-normal metal-poor star, and two stars that have accreted material from a  1.5 M  AGB companion, one having received  0.01 M  of material and the other having received  0.1 M  . We find the behaviour of the carbon-normal metal-poor stars is well reproduced by this mechanism. In addition, our models also show that the efficiency of carbon-depletion is significantly reduced in carbon-rich stars. This extra-mixing mechanism is able to reproduce the observed properties of both carbon-normal and carbon-rich stars.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号