首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1035篇
  免费   267篇
  国内免费   29篇
测绘学   12篇
大气科学   15篇
地球物理   872篇
地质学   218篇
海洋学   81篇
天文学   6篇
综合类   11篇
自然地理   116篇
  2024年   13篇
  2023年   5篇
  2022年   7篇
  2021年   63篇
  2020年   83篇
  2019年   35篇
  2018年   53篇
  2017年   51篇
  2016年   48篇
  2015年   49篇
  2014年   62篇
  2013年   117篇
  2012年   38篇
  2011年   41篇
  2010年   42篇
  2009年   32篇
  2008年   74篇
  2007年   54篇
  2006年   63篇
  2005年   32篇
  2004年   37篇
  2003年   39篇
  2002年   40篇
  2001年   22篇
  2000年   38篇
  1999年   25篇
  1998年   25篇
  1997年   26篇
  1996年   28篇
  1995年   8篇
  1994年   11篇
  1993年   12篇
  1992年   12篇
  1991年   4篇
  1990年   9篇
  1989年   6篇
  1988年   3篇
  1987年   8篇
  1986年   1篇
  1985年   4篇
  1984年   2篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
  1973年   1篇
  1971年   2篇
排序方式: 共有1331条查询结果,搜索用时 140 毫秒
991.
A process‐based model was developed, NICE‐LAKE (NIES (National Institute for Environmental Studies) Integrated Catchment‐based Ecohydrology), which includes interactions between surface water, canopy, unsaturated water, aquifer, lake and rivers, and used it to model the shallow eutrophic Lake Kasumigaura in Japan. By estimating the spatial distribution of the hydrological cycle, the model shows that groundwater withdrawal greatly affects groundwater distribution and seepage and indirectly influences lake water level. The simulated seepage agrees excellently with the budget‐derived value calculated from the observed groundwater level, lake level and isotope analyses. The model showed that groundwater seepage and groundwater concentrations are important contributors to the eutrophication of Lake Kasumigaura, an important contribution not recognized in previous studies of the lake. Groundwater entering the lake from the north side is contaminated with high concentrations of nitrate and ammonia from intensive pig and cattle raising and cultivated fields. The simulation showed that this high nitrogen load plays an important role in the eutrophication of the lake (the nitrogen load in inflowing groundwater is 30% of river inflow and 4 times that from wastewater treatment plants) in spite of government policies to prevent overland flow of nutrients into the lake. Our results show that NICE‐LAKE is a powerful tool for forecasting how the water quality of the lake will be affected by the (illegal) disposal of animal excreta in the surrounding open fields. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
992.
The differential model MIAGE (see “Mechanistic Interpretation of Alpine Glacierized Environments: Part 1. Model formulation and related dynamical properties” by Perona and Burlando, this issue) is analyzed in this work with the purpose of: (i) showing the model equivalence to a nonlinear reservoir system; (ii) identifying and correlating the model’s coefficients to the hydrogeomorphological properties of a number of different Alpine basins; (iii) testing the model performances to assess the potential impact of climatic change on the hydrologic dynamics of the basins being studied. The study catchments have different topographic, morphologic and hydrologic characteristics, range in size from 4 to 3300 km2 and are 2–32% glacierized. For each basin, the model coefficients are obtained by applying a system identification technique to the mean seasonal basin behaviour. It is shown that the coefficients vary in a reasonable way according to hydrogeomorphological basin characteristics. Model coefficients provide insight into the basin drainage time, and the time dependent damping and elastic properties of the system. Despite its simplicity and in the limit of the model capabilities, results for changing climatic scenarios are also in good qualitative agreement with other well tested modelling approaches. In summary, MIAGE offers an interesting minimalist approach to shed light on the dynamics of glacierized Alpine catchments.  相似文献   
993.
1959-2008年淮河流域极端径流的强度和频率特征   总被引:1,自引:0,他引:1  
姚梦婷  高超  陆苗  刘青  胡春生 《地理研究》2015,34(8):1535-1546
基于淮河中上游主干流两侧13个水文站点1959-2008年逐日径流量的年最大值序列和超门限峰值序列,采用Mann-Kendall趋势检验、21种分布函数和Pearson III分布,分析淮河流域极端径流的强度和频率特征。结果表明:① 极端径流强度6个站点呈增加趋势,7个呈减少趋势;极端径流发生频率8个站点呈增加趋势,5个呈减少趋势。② 极端径流在径流值上的频率分布,年最大值序列总体较服从Weibull分布,而非普遍采用的广义极值分布;超门限峰值序列总体仍较服从广义帕累托分布。③ 基于超门限峰值序列和广义帕累托分布估算的50年一遇的极端径流值精度最高,大部分地区误差率低于0.2,精度优于工程标准Pearson III分布。气候变化背景下,极端径流频率特征发生变化,流域上游地区工程标准可能需要调整。受函数形态影响,极值序列最优拟合函数估算精度不如广义极值分布和广义帕累托分布。  相似文献   
994.
通过深入的野外考察,在汉江上游郧县五峰段多个地点发现全新世古洪水事件的沉积学记录,为恢复史前特大洪水事件的洪峰水位和洪峰流量提供了物质基础。在系统获取河道水文参数的基础上,采用ArcGIS 耦合HEC-RAS模型,推算出其洪峰流量介于42 220~63 400m3/s 之间。对于河槽糙率的灵敏度检验表明,给定糙率变化±25%,模型模拟得到的洪峰流量误差在-10.6%~6.3%之间。这个误差范围远小于采用比降-面积法获得的结果。同时,采用该模型和同样的参数,依据该河段现代大洪水洪痕高程,恢复推算其洪峰流量,其结果与实测数据误差在-3.9%~1.0%之间。与其它方法相比较,这种新方法有效地提高了水文参数选取准确性,使得古洪水水文恢复计算结果更为可靠。本研究为超长尺度大洪水水文学恢复提供了新的途径,也获得了汉江上游万年尺度特大洪水的水文学数据资料,对汉江上游水利水电枢纽工程建设、水资源调度和防洪减灾具有重要的现实意义。  相似文献   
995.
Since stormwater wash-off of pollutants in urban areas is largely affected by environmental variability, it is very difficult to predict the amount of pollutants transported by stormwater runoff during and after individual rainfall events. We investigated the addition of a random component into an exponential wash-off equation of total suspended solids (TSS) and total nitrogen (TN) to model the variability of runoff pollutant concentrations. The model can be analytically solved to describe the probability distributions of TSS and TN concentrations as a function of increasing runoff depths. TSS data from six Australian catchments and TN data from three of these catchments were used to calibrate the model and evaluate its applicability. Using the results of the model, its potential use to determine the appropriate size of stormwater treatment systems is discussed, stressing how probabilistic considerations should be included in the design of such systems. Specifically, stormwater depths retained by a treatment system should result from a compromise between the recurrence of specific runoff depths and the probability to discharge a target pollutant concentration when such a runoff depth is exceeded.  相似文献   
996.
We measured stream temperature continuously during the 2011 summer run‐off season (May through October) in nine watersheds of Southeast Alaska that provide spawning habitat for Pacific salmon. The nine watersheds have glacier coverage ranging from 0% to 63%. Our goal was to determine how air temperature and watershed land cover, particularly glacier coverage, influence stream temperature across the seasonal glacial meltwater hydrograph. Multiple linear regression models identified mean watershed elevation (related to glacier extent) and watershed lake coverage (%) as the strongest landscape controls on mean monthly stream temperature, with the weakest (May) and strongest (July) models explaining 86% and 97% of the temperature variability, respectively. Mean weekly stream temperature was significantly correlated with mean weekly air temperature in seven streams; however, the relationships were weak to non‐significant in the streams influenced by glacial run‐off. Streams with >30% glacier coverage showed decreasing stream temperatures with rising summer air temperatures, whereas those with <30% glacier coverage exhibited summertime warming. Glaciers also had a cooling effect on monthly mean stream temperature during the summer (July through September) equivalent to a decrease of 1.1 °C for each 10% increase in glacier coverage. The maximum weekly average temperature (an index of thermal suitability for salmon) in the six glacial streams was substantially below the lower threshold for optimum salmon growth. This finding suggests that although glaciers are important for moderating summer stream temperatures, future reductions in glacier run‐off may actually improve the thermal suitability of some glacially dominated streams in Southeast Alaska for salmon. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
997.
This paper presents an application of a long-term, large catchment-scale, water balance model developed to predict the effects of forest clearing in the south-west of Western Australia. The conceptual model simulates the basic daily water balance fluxes in forested catchments before and after clearing. The large catchment is divided into a number of sub-catchments (1–5 km2 in area), which are taken as the fundamental building blocks of the large catchment model. The responses of the individual subcatchments to rainfall and pan evaporation are conceptualized in terms of three inter-dependent subsurface stores A, B and F, which are considered to represent the moisture states of the subcatchments. Details of the subcatchment-scale water balance model have been presented earlier in Part 1 of this series of papers. The response of any subcatchment is a function of its local moisture state, as measured by the local values of the stores. The variations of the initial values of the stores among the subcatchments are described in the large catchment model through simple, linear equations involving a number of similarity indices representing topography, mean annual rainfall and level of forest clearing. The model is applied to the Conjurunup catchment, a medium-sized (39·6 km2) catchment in the south-west of Western Australia. The catchment has been heterogeneously (in space and time) cleared for bauxite mining and subsequently rehabilitated. For this application, the catchment is divided into 11 subcatchments. The model parameters are estimated by calibration, by comparing observed and predicted runoff values, over a 18 year period, for the large catchment and two of the subcatchments. Excellent fits are obtained.  相似文献   
998.
A new physically based hydrological and soil erosion model has been developed, which can be used for planning and conservation purposes: the LImburg Soil Erosion Model (LISEM). The LISEM model is one of the first examples of a physically based model that is completely incorporated in a raster Geographical Information System. This incorporation facilitates easy application in larger catchments, improves the user friendliness by avoiding conversion routines and allows remotely sensed data to be used. Processes incorporated in the model are rainfall, interception, surface storage in micro-depressions, infiltration and vertical movement of water in the soil, overland flow, channel flow, detachment by rainfall and throughfall, detachment by overland flow and transport capacity of the flow. Special attention has been given to the influence of tractor wheelings, small roads and surface sealing. Vertical movement of water in the soil is simulated using the Richard's equation. Optionally, the user can choose the Holtan or the Green–Ampt infiltration model. For the distribution flow routing, a four-point finite-difference solution of the kinematic wave is used together with Manning's equation.  相似文献   
999.
JONATHAN S. PRICE 《水文研究》1996,10(10):1263-1272
Peatlands do not readily return to functional wetland ecosystems after harvesting (cutting), because the harsh hydrological and microclimatic conditions are unsuitable for Sphagnum regeneration. In this study, drainage ditches blocked after harvesting restored the water balance to a condition similar to a nearby natural bog. Evaporation averaged 2.9 and 2.7 mm day−1 on the cutover and natural bog, respectively. Evaporation consumed most of the rainfall input (86 and 80%, respectively), whereas runoff was minor at both sites (6 and 4%, respectively). However, the water table position was markedly different at these sites. Median water table depth was 0.05 m below the surface in the natural bog, compared with 0.44 m in the cutover bog (ditches blocked). Changes to the peak soil matrix owing to drainage and cutting reduced the specific yield (Sy) of the peat to 0.04–0.06 from 0.35–0.55, causing exaggerated water table changes in the cutover site. Nevertheless, volumetric soil moisture in the cutover site (0.67 ± .08) had low variability, and was maintained above moisture contents found in Sphagnum hummocks in the natural bog (0.48 ± .10), although less than on Sphagnum lawn (0.84 ± .11). Poor Sphagnum regeneration on cutover surfaces can therefore be attributed to its inability to extract water from the underlying peat, which retains water at matric suction greater than the non-vascular Sphagnum can generate. The corrupted iron pan under main ditches has permitted partial recharge of the underlying aquifer, reducing local hydraulic gradients, thereby decreasing vertical seepage loss.  相似文献   
1000.
Numerous models had been developed to predict the annual evapotranspiration (ET) in vegetated lands across various spatial scales. Fu's (Scientia Atmospherica Sinica, 5, 23–31) and Zhang's (Water Resources Research, 37, 701–708) ET simulation models have emerged as highly effective and have been widely used. However, both formulas have the non-quantitative parameters (m in Fu's model and w in Zhang's model). Based on the collected 1789 samples from global long-term hydrological studies, this study discovered significant relations between m (or w) and vegetation coverage or greenness in collected catchments. Then, we used these relations to qualify the parameters in both Zhang's and Fu's models. Results show that the ET estimation accuracies of Fu's (or Zhang's) model are significantly improved by about 13.49 mm (or 6.74 mm) for grassland and cropland, 38.52 mm (or 29.84 mm) for forest and shrub land (coverage<40%), 19.74 mm (or 16.17 mm) for mixed land (coverage<40%), respectively. However, Zhang's model shows higher errors compared with Fu's model, especially in regions with high m (or w) values, such as those with dense vegetations or P/E0 (annual precipitation to annual potential ET) smaller than 1.0. Additionally, this study also reveals that for regions with vegetation cover less than 40%, the annual ET is not only determined by vegetation types, but also relates to the sizes of vegetation-covered areas. Conversely, for regions with vegetation cover more than 40%, the annual ET is mainly determined by the vegetation density rather than vegetation types or vegetation coverage. Thus, linking m (or w) parameters with vegetation greenness allows leveraging remote sensing for forest management in data-scarce areas, safeguarding regional water resources. This study pioneers integrating vegetation-related indices with basin parameters, advocating for their crucial role in more effective hydrological modelling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号