首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1120篇
  免费   185篇
  国内免费   31篇
测绘学   12篇
大气科学   15篇
地球物理   874篇
地质学   221篇
海洋学   81篇
天文学   6篇
综合类   11篇
自然地理   116篇
  2024年   15篇
  2023年   5篇
  2022年   8篇
  2021年   65篇
  2020年   83篇
  2019年   35篇
  2018年   53篇
  2017年   51篇
  2016年   48篇
  2015年   49篇
  2014年   62篇
  2013年   117篇
  2012年   38篇
  2011年   41篇
  2010年   42篇
  2009年   32篇
  2008年   74篇
  2007年   54篇
  2006年   63篇
  2005年   32篇
  2004年   37篇
  2003年   39篇
  2002年   40篇
  2001年   22篇
  2000年   38篇
  1999年   25篇
  1998年   25篇
  1997年   26篇
  1996年   28篇
  1995年   8篇
  1994年   11篇
  1993年   12篇
  1992年   12篇
  1991年   4篇
  1990年   9篇
  1989年   6篇
  1988年   3篇
  1987年   8篇
  1986年   1篇
  1985年   4篇
  1984年   2篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
  1973年   1篇
  1971年   2篇
排序方式: 共有1336条查询结果,搜索用时 15 毫秒
131.
Reports of abruptly declining flows of Canada's Athabasca River have prompted concern because this large, free‐flowing river could be representative for northern North America, provides water for the massive Athabasca oil‐sands projects and flows to the extensive and biodiverse Peace–Athabasca, Slave and Mackenzie River deltas. To investigate historic hydrology along the river and its major tributaries, we expanded the time series with interpolations for short data gaps; calculations of annual discharges from early, summer‐only records; and by splicing records across sequential hydrometric gauges. These produced composite, century‐long records (1913–2011) and trend detection with linear Pearson correlation provided similar outcomes to nonparametric Kendall τ‐b tests. These revealed that the mountain and foothills reaches displayed slight increases in winter discharges versus larger declines in summer discharges and consequently declining annual flows (~0.16% per year at Hinton; p < 0.01). Conversely, with contrasting boreal contributions, the Athabasca River at Athabasca displayed no overall trend in monthly or annual flows, but there was correspondence with the Pacific Decadal Oscillation that contributed to a temporary flow decline from 1970 to 2000. These findings from century‐long records contrast with interpretations from numerous shorter‐term studies and emphasize the need for sufficient time series for hydrologic trend analyses. For Northern Hemisphere rivers, the study interval should be at least 80 years to span two Pacific Decadal Oscillation cycles and dampen the influence from phase transitions. Most prior trend analyses considered only a few decades, and this weakens interpretations of the hydrologic consequences of climate change. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
132.
We calibrated an integrated flow–tracer model to simulate spatially distributed isotope time series in stream water in a 7.9‐km2 catchment with an urban area of 13%. The model used flux tracking to estimate the time‐varying age of stream water at the outlet and both urbanized (1.7 km2) and non‐urban (4.5 km2) sub‐catchments over a 2.5‐year period. This included extended wet and dry spells where precipitation equated to >10‐year return periods. Modelling indicated that stream water draining the most urbanized tributary was youngest with a mean transit time (MTT) of 171 days compared with 456 days in the non‐urban tributary. For the larger catchment, the MTT was 280 days. Here, the response of urban contributing areas dominated smaller and more moderate runoff events, but rural contributions dominated during the wettest periods, giving a bi‐modal distribution of water ages. Whilst the approach needs refining for sub‐daily time steps, it provides a basis for projecting the effects of urbanization on stream water transit times and their spatial aggregation. This offers a novel approach for understanding the cumulative impacts of urbanization on stream water quantity and quality, which can contribute to more sustainable management. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
133.
Abstract

This paper aims at revisiting the use of non-dimensional representations for catchment change and model robustness analysis. As well as being helpful for catchment classification according to hydroclimatic conditions, the Turc-Budyko representation enables visualization of temporal changes in these conditions and/or modification of the hydrological behaviour of the catchment. This brings a new perspective to hydrological analysis, different from the classical time series plots, which helps when interpreting catchment functioning with respect to hydroclimatic constraints. These tools do not require statistical analyses of observed series and are therefore very simple to implement. Four case studies are considered here to illustrate the use of the Q/P = f(P/Ep) graph. When combined with the inter-annual Turc-Mezentsev formula, this visual framework enables anticipation of potential difficulties for models based on the same hypotheses, solely using the analysis of observed data.  相似文献   
134.
In hydrological modelling of catchments, wherein streams are groundwater-fed, an accurate representation of groundwater processes and their interaction with surface water is crucial. With this purpose, a coupled model was recently developed linking SWAT (Soil and Water Assessment Tool) with the fully-distributed groundwater model MODFLOW (Modular Groundwater Flow). In this study, SWAT and SWAT-MODFLOW were applied to a Danish groundwater-dominant catchment, simulating groundwater abstraction scenarios and assessing the benefits and drawbacks of SWAT-MODFLOW. Both models demonstrated good performance. However, SWAT-MODFLOW provided more realistic outputs when simulating abstraction: the decrease in streamflow was similar to the volume of water abstracted, while in SWAT the impact was negligible. SWAT also showed impacts on streamflow only when abstractions were taken from the shallow aquifer, not from the deep aquifer. Overall, SWAT-MODFLOW demonstrated wider possibilities for groundwater analysis, providing more insights than SWAT in supporting decision making in relation to environmental assessment.  相似文献   
135.
Uncontrolled overland flow drives flooding, erosion, and contaminant transport, with the severity of these outcomes often amplified in urban areas. In pervious media such as urban soils, overland flow is initiated via either infiltration‐excess (where precipitation rate exceeds infiltration capacity) or saturation‐excess (when precipitation volume exceeds soil profile storage) mechanisms. These processes call for different management strategies, making it important for municipalities to discern between them. In this study, we derived a generalized one‐dimensional model that distinguishes between infiltration‐excess overland flow (IEOF) and saturation‐excess overland flow (SEOF) using Green–Ampt infiltration concepts. Next, we applied this model to estimate overland flow generation from pervious areas in 11 U.S. cities. We used rainfall forcing that represented low‐ and high‐intensity events and compared responses among measured urban versus predevelopment reference soil hydraulic properties. The derivation showed that the propensity for IEOF versus SEOF is related to the equivalence between two nondimensional ratios: (a) precipitation rate to depth‐weighted hydraulic conductivity and (b) depth of soil profile restrictive layer to soil capillary potential. Across all cities, reference soil profiles were associated with greater IEOF for the high‐intensity set of storms, and urbanized soil profiles tended towards production of SEOF during the lower intensity set of storms. Urban soils produced more cumulative overland flow as a fraction of cumulative precipitation than did reference soils, particularly under conditions associated with SEOF. These results will assist cities in identifying the type and extent of interventions needed to manage storm water produced from pervious areas.  相似文献   
136.
Transient storage of floodwaters in aquifers is known to attenuate peak flows in rivers and drive subsurface dissolution. Transient aquifer storage could be enhanced in watersheds overlying karst aquifers where caves facilitate surface and groundwater exchange. Few studies, however, have examined controls on, or magnitudes of, transient aquifer storage or flood peak attenuation in karstic watersheds. Here we evaluate flood peak attenuation with multiple linear regression analyses of 10 years of river and groundwater data from the Suwannee River, which flows over the karstic upper Floridan aquifer in north-central Florida and experiences frequent flooding. Regressions show antecedent river stage exerts the dominant control on magnitudes of transient aquifer storage, with recharge and time to peak having secondary controls. Specifically, low antecedent stages result in larger magnitudes of transient aquifer storage and thus greater flood attenuation than conditions of elevated antecedent stage. These findings suggest subsurface weathering, including cave formation and enlargement, caused by transient aquifer storage could occur on a more frequent basis in aquifers where groundwater table elevation is lowered due to anthropogenic or climatic influences. Our work also shows that measures of groundwater table elevation prior to an event could be used to improve predictive flood models. © 2018 John Wiley & Sons, Ltd.  相似文献   
137.
We investigate the spatial and temporal englacial and subglacial processes associated with a temperate glacier resting on a deformable bed using the unique Glacsweb wireless in situ probes (embedded in the ice and the till) combined with other techniques [including ground penetrating radar (GPR) and borehole analysis]. During the melt season (spring, summer and autumn), high surface melt leads to high water pressures in the englacial and subglacial environment. Winter is characterized by no surface melting on most days (‘base’) apart from a series of positive degree days. Once winter begins, a diurnal water pressure cycle is established in the ice and at the ice/sediment interface, with direct meltwater inputs from the positive degree days and a secondary slower englacial pathway with a five day lag. This direct surface melt also drives water pressure changes in the till. Till deformation occurred throughout the year, with the winter rate approximately 60% that of the melt season. We were able to show the bed comprised patches of till with different strengths, and were able to estimate their size, relative percentage and temporal stability. We show that the melt season is characterized by a high pressure distributed system, and winter by a low pressure channelized system. We contrast this with studies from Greenland (overlying rigid bedrock), where the opposite was found. We argue our results are typical of soft bedded glaciers with low englacial water content, and suggest this type of glacier can rapidly respond to surface-driven melt. Based on theoretical and field results we suggest that the subglacial hydrology comprises a melt season distributed system dominated by wide anastomosing broad flat channels and thin water sheets, which may become more channelized in winter, and more responsive to changes in meltwater inputs. © 2019 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
138.
Stratigraphy is a fundamental component of floodplain heterogeneity and hydraulic conductivity and connectivity of alluvial aquifers, which affect hydrologic processes such as groundwater flow and hyporheic exchange. Watershed-scale hydrological models commonly simplify the sedimentology and stratigraphy of floodplains, neglecting natural floodplain heterogeneity and anisotropy. This study, conducted in the upper reach of the East River in the East River Basin, Colorado, USA, combines point-, meander-, and floodplain-scale data to determine key features of alluvial aquifers important for estimating hydrologic processes. We compare stratigraphy of two meanders with disparate geometries to explore floodplain heterogeneity and connectivity controls on flow and transport. Meander shape, orientation, and internal stratigraphy affected residence time estimates of laterally exchanged hyporheic water. Although the two meanders share a sediment source, vegetation, and climate, their divergent river migration histories resulted in contrasting meander hydrofacies. In turn, the extent and orientation of these elements controlled the effective hydraulic conductivity and, ultimately, estimates of groundwater transport and hyporheic residence times. Additionally, the meanders’ orientation relative to the valley gradient impacted the hydraulic gradient across the meanders—a key control of groundwater velocity. Lastly, we combine our field data with remotely sensed data and introduce a potential approach to estimate key hydrostratigraphic packages across floodplains. Prospective applications include contaminant transport studies, hyporheic models, and watershed models. © 2019 John Wiley & Sons, Ltd.  相似文献   
139.
Theoretical studies of glacial outburst floods (jökulhlaups) assume that: (i) intraglacial floodwater is transported efficiently in isolated conduits; (ii) intraglacial conduit enlargement operates proportionally to increasing discharge; (iii) floodwater exits glaciers through pre‐existing ice‐marginal outlets; and (iv) the morphology and positioning of outlets remains fixed during flooding. Direct field observations, together with historical jökulhlaup accounts, confirm that these theoretical assumptions are not always correct. This paper presents new evidence for spatial and temporal changes in intraglacial floodwater routing during jökulhlaups; secondly, it identifies and explains the mechanisms controlling the position and morphology of supraglacial jökulhlaup outlets; and finally, it presents a conceptual model of the controls on supraglacial outbursts. Field observations are presented from two Icelandic glaciers, Skeiðarárjökull and Sólheimajökull. Video footage and aerial photographs, taken before, during and after the Skeiðarárjökull jökulhlaup and immediately after the Sólheimajökull jökulhlaup, reveal changes in floodwater routing and the positioning and morphology of outlets. Field observations confirm that glaciers cannot transmit floodwater as efficiently as previously assumed. Rapid increases in jökulhlaup discharge generate basal hydraulic pressures in excess of ice overburden. Under these circumstances, floodwater can be forced through the surface of glaciers, leading to the development of a range of supraglacial outlets. The rate of increase in hydraulic pressure strongly influences the type of supraglacial outlet that can develop. Steady increases in basal hydraulic pressure can retro‐feed pre‐existing englacial drainage, whereas transient increases in pressure can generate hydraulic fracturing. The position and morphology of supraglacial outlets provide important controls on the spatial and temporal impact of flooding. The development of supraglacial jökulhlaup outlets provides a new mechanism for rapid englacial debris entrainment. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
140.
In the past century, great progress has been made worldwide in our understanding of forest-water relationship. The successful forestation programs implemented in China-which have improved the ecological environmental conditions-have gained the attention of many researchers and highlighted the relationship between forestation and water yields. The arid and semi-arid Loess Plateau has received attention from water engineers and eco-hydrological researchers in China because of a shortage in water resources. We selected one of the oldest stations conducting soil and water conservation experiments, the Xifeng soil and water conservation station, and chose the Nanxiaohe catchment and its paired catchments (Yangjiagou catchment and Dongzhuanggou catchment) as our research areas. Trends in precipitation, air temperature, streamflow over the past 50 years, and the effect of changing land use on streamflow were analyzed. The Mann-Kendall test showed that precipitation had a negative trend (downward trend), whereas air temperature showed a positive trend (upward trend) from the past to present in the Nanxiaohe catchment. However, the trends seen in precipitation, air temperature did not contain any "jumping points." The paired catchment approach is used to detect the effects of land cover change on hydrology in the Yangjiagou and the contrast catchment, i.e., Dongzhuanggou catchment in our study. The results showed a large change in land use in the Yangjiagou catchment from 1954 to 2008. An increase in forested land (from 0% to 40.08% from 1954 to 2008) and a reduction of bare land (from 51.26% to 5.50% from 1954 to 2008) accounted for a large part of the change in land use. However, the land use changed little in the contrast catchment. The comparison of streamfiow in the paired catchments showed that forestation reduced streamflow by 49.63% (or 6.5 mm) each year.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号