首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
地球物理   1篇
地质学   16篇
海洋学   4篇
自然地理   3篇
  2013年   3篇
  2012年   2篇
  2011年   4篇
  2009年   4篇
  2008年   2篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  2000年   2篇
  1997年   2篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
11.
The cyclic arrangement of lithofacies of the Karharbari Formation of the Damuda Group from a part of the Talchir Gondwana basin has been examined by statistical techniques. The lithologies have been condensed into five facies states viz. coarse-, medium-, fine-grained sandstones, shale and coal for the convenience of statistical analyses. Markov chain analysis indicates the arrangement of Karharbari lithofacies in form of fining upward cycles. A complete cycle consists of conglomerate or coarse-grained sandstone at the base sequentially succeeded by medium-and fine-grained sandstones, shale and coal at the top. The entropy analysis categorizes the Karharbari cycles into the C-type cyclicity, which is essentially a random sequence of lithologic states. Regression analysis undertaken in the present study indicates the existence of sympathetic relationship between total thickness of strata (net subsidence) and number and average thickness of sedimentary cycle and antipathic relationship between number and average thickness of sedimentary cycle. These observations suggest that cyclic sedimentation of the Karharbari Formation was controlled by autocyclic process by means of lateral migration of streams activated by intrabasinal differential subsidence, which operated within the depositional basin and the channels carrying coarse grade clastic sediments, which make the cycles thicker, tend to be more common in the areas of maximum subsidence. Clastic sediments issued from the laterally migrating rivers interrupted the cyclic sedimentation of the Karharbari Formation in many instances.  相似文献   
12.
The Talchir Basin, one of India's oldest basins, has been a subject of interest because of its rich coal deposits. The maximum thickness of the basin is about 1500 m. Beyond the basin is the hard metamorphic rocks of Precambrian age. The ambient noise survey data have been analyzed for the Talchir Basin using Nakamura's technique of horizontal–vertical-spectral-ratio (HVSR) to ascertain the basin structure in terms of the predominant frequency. The predominant frequency varies from 0.25 Hz to 7.8 Hz but a major portion of the basin comes under the range of 0.3 Hz–2.4 Hz while on the metamorphic rocks it is as high as 7.8 Hz. The variation in predominant frequency shows a good correlation with the sediment thickness of the basin. The results have been compared with the previous studies by other researchers and it shows consistency with the northerly dip of the basin. The present study has also been compared with the results of the synthetic seismogram that was performed for the Talchir Basin. The predominant frequency obtained from HVSR technique complements well with the frequency at which the peak response spectra ratio is observed. The present study of the predominant frequency identifies quite well the characteristics of Talchir Basin and is in good agreement with the synthetic ground motion modeling of the region.  相似文献   
13.
High-impact mesoscale weather events, occurring in different parts of India in all seasons, lead to major weather- and climate-related disasters. Several research groups and operational weather forecasting centres in India have adopted mesoscale models for research and operational usage. This paper reviews the work done by different groups with respect to two specific events, (1) unprecedented locally heavy rainfall near Mumbai (Santa Cruz) on 26 and 27 July 2005 and (2) the Orissa super-cyclone of 29 and 30 October 1999 from its incipient stage on 24 and 25 October 1999. Considerable variability in the prediction of the intensity and location of mesoscale heavy rainfall, as well as in the intensity and path of the super-cyclone, are found. In order to reduce uncertainty in dynamical prediction, it is necessary that the model dynamics, physics, resolution, boundary conditions and availability of data on land–ocean surface processes are tuned separately to the specific event types, such as heavy monsoon rainfall, tropical cyclone genesis and movement and severe local thunderstorms, as the processes controlling such types of events may require suitable treatments for their proper simulations through appropriate dynamics, physics and resolution.  相似文献   
14.
Orissa is one of the most flood prone states of India. The floods in Orissa mostly occur during monsoon season due to very heavy rainfall caused by synoptic scale monsoon disturbances. Hence a study is undertaken to find out the characteristic features of very heavy rainfall (24 hours rainfall ≥125 mm) over Orissa during summer monsoon season (June–September) by analysing 20 years (1980–1999) daily rainfall data of different stations in Orissa. The principal objective of this study is to find out the role of synoptic scale monsoon disturbances in spatial and temporal variability of very heavy rainfall over Orissa. Most of the very heavy rainfall events occur in July and August. The region, extending from central part of coastal Orissa in the southeast towards Sambalpur district in the northwest, experiences higher frequency and higher intensity of very heavy rainfall with less interannual variability. It is due to the fact that most of the causative synoptic disturbances like low pressure systems (LPS) develop over northwest (NW) Bay of Bengal with minimum interannual variation and the monsoon trough extends in west-northwesterly direction from the centre of the system. The very heavy rainfall occurs more frequently with less interannual variability on the western side of Eastern Ghat during all the months and the season except September. It occurs more frequently with less interannual variability on the eastern side of Eastern Ghat during September. The NW Bay followed by Gangetic West Bengal/Orissa is the most favourable region of LPS to cause very heavy rainfall over different parts of Orissa except eastern side of Eastern Ghat. The NW Bay and west central (WC) Bay are equally favourable regions of LPS to cause very heavy rainfall over eastern side of Eastern Ghat. The frequency of very heavy rainfall does not show any significant trend in recent years over Orissa except some places in north-east Orissa which exhibit significant rising trend in all the monsoon months and the season as a whole.  相似文献   
15.
Within the Brahmani valley granulite terrane (Eastern Ghats) of Dhenkanal district, Orissa the sporadically outcropping pods of chromite-rich serpentinite are devoid of chrome-poor enstatitite which occurs abundantly in the northern Gorumahisani greenstone terrane as well defined units within the chromite-rich suites at Katpal, Sukinda and Boula-Nausahi, Cuttack and Keonjhar districts. Available field evidence is compatible with a model of emplacement of these ultramafic bodies along the contact between the two terranes in a number of stages involving soft and hard collision, subduction of Gorumahisani Group oceanic lithosphere below the Eastern Ghats granulites followed by delamination and asthenospheric upwelling. Falsifiability tests for the model have been indicated.  相似文献   
16.
In peninsular India, Gondwana strata are disposed linearly as strings of isolated basins conforming to the trend of the present day Koel–Damodar, Son–Mahanadi and Prahnita–Godavari river valleys. There are seven exposed and one concealed Gondwana basins/outliers in Orissa belonging to the Son–Mahanadi valley system. The present study is concerned with the consanguinity of the Talchir and Ong-river basins of Orissa. Similarity and dissimilarity of palaeocurrent population in these two basins were taken into consideration to test the consanguinity of the basins under consideration. Statistical analysis suggests that the sampled palaeocurrent data of the same formation belong to the same population when considered for both basins. In geologic terms, the basin parameters were identical when considered for either the Talchir or the Karharbari Formation that proves the consanguinity of both the basins and the possible existence of a master basin that encompassed other sister Gondwana basins in Orissa.  相似文献   
17.
The summer monsoon rainfall over Orissa occurs mostly due to low pressure systems (LPS) developing over the Bay of Bengal and moving along the monsoon trough. A study is hence undertaken to find out characteristic features of the relationship between LPS over different regions and rain-fall over Orissa during the summer monsoon season (June-September). For this purpose, rainfall and rainy days over 31 selected stations in Orissa and LPS days over Orissa and adjoining land and sea regions during different monsoon months and the season as a whole over a period of 20 years (1980-1999) are analysed. The principal objective of this study is to find out the role of LPS on spatial and temporal variability of summer monsoon rainfall over Orissa. The rainfall has been significantly less than normal over most parts of Orissa except the eastern side of Eastern Ghats during July and hence during the season as a whole due to a significantly less number of LPS days over northwest Bay in July over the period of 1980-1999. The seasonal rainfall shows higher interannual variation (increase in coefficient of variation by about 5%) during 1980-1999 than that during 1901-1990 over most parts of Orissa except northeast Orissa. Most parts of Orissa, especially the region extending from central part of coastal Orissa to western Orissa (central zone) and western side of the Eastern Ghats get more seasonal monsoon rainfall with the development and persistence of LPS over northwest Bay and their subsequent movement and persistence over Orissa. The north Orissa adjoining central zone also gets more seasonal rainfall with development and persistence of LPS over northwest Bay. While the seasonal rainfall over the western side of the Eastern Ghats is adversely affected due to increase in LPS days over west central Bay, Jharkhand and Bangladesh, that over the eastern side of the Eastern Ghats is adversely affected due to increase in LPS days over all the regions to the north of Orissa. There are significant decreasing trends in rainfall and number of rainy days over some parts of southwest Orissa during June and decreasing trends in rainy days over some parts of north interior Orissa and central part of coastal Orissa during July over the period of 1980-1999  相似文献   
18.
Several radioactive quartz-pebble conglomerate (QPC) occurrences at the western margin of Archaean Bonai granite and overlying Iron Ore Group (IOG) rocks have recently been located over a total strike length of 8–10 km intermittently in a NE-SW to E-W trend with steep dips due north-west to north in parts of Sundargarh district of Orissa. The QPC samples have analysed up to 0.039% U3O8 and 0.035% ThO2 with high concentration of Y (74 to 518 ppm), La(<100 to 880 ppm), Cr ( 126 to 633 ppm), Zr (137 to 1250 ppm) and Pb (31 to 581 ppm). Cellulose Nitrate (CN) film studies of few QPC samples indicated adsorbed uranium over goethite and infiltrated ferruginous material (limonite), secondary uranium as encrustation and fracture filling and discrete sub-rounded grains of monazite, zircon, allanite and rare xenotime in the matrix of QPC as radioactive phases. Higher content of Th over U, elevated concentration of Y and La in QPC eliminates the possibility of its low temperature product by epigenetic processes. Poor correlation of U with elements like Pb, Y, Zr, La and Cr can be explained due to surficial leaching of uranium from QPC after its deposition as reflected by adsorbed U over iron-oxides and low U/Th ratio in QPC in the area.  相似文献   
19.
Orissa State, a meteorological subdivision of India, lies on the east coast of India close to north Bay of Bengal and to the south of the normal position of the monsoon trough. The monsoon disturbances such as depressions and cyclonic storms mostly develop to the north of 15° N over the Bay of Bengal and move along the monsoon trough. As Orissa lies in the southwest sector of such disturbances, it experiences very heavy rainfall due to the interaction of these systems with mesoscale convection sometimes leading to flood. The orography due to the Eastern Ghat and other hill peaks in Orissa and environs play a significant role in this interaction. The objective of this study is to develop an objective statistical model to predict the occurrence and quantity of precipitation during the next 24 hours over specific locations of Orissa, due to monsoon disturbances over north Bay and adjoining west central Bay of Bengal based on observations to up 0300 UTC of the day. A probability of precipitation (PoP) model has been developed by applying forward stepwise regression with available surface and upper air meteorological parameters observed in and around Orissa in association with monsoon disturbances during the summer monsoon season (June-September). The PoP forecast has been converted into the deterministic occurrence/non-occurrence of precipitation forecast using the critical value of PoP. The parameters selected through stepwise regression have been considered to develop quantitative precipitation forecast (QPF) model using multiple discriminant analysis (MDA) for categorical prediction of precipitation in different ranges such as 0.1–10, 11–25, 26–50, 51–100 and >100 mm if the occurrence of precipitation is predicted by PoP model. All the above models have been developed based on data of summer monsoon seasons of 1980–1994, and data during 1995–1998 have been used for testing the skill of the models. Considering six representative stations for six homogeneous regions in Orissa, the PoP model performs very well with percentages of correct forecast for occurrence/non-occurrence of precipitation being about 96% and 88%, respectively for developmental and independent data. The skill of the QPF model, though relatively less, is reasonable for lower ranges of precipitation. The skill of the model is limited for higher ranges of precipitation. accepted September 2006  相似文献   
20.
Geological investigation in recent years reveals that the anorthosite-leuconorite massif (81 sq km) is much larger than known from previous studies. The massif is bordered by a suite of garnetiferous felsic rocks comprising quartz monzonite gneiss, granite gneiss and megacrystic K-feldspar-bearing granite. Ferrodiorites, hitherto unknown from this area, occur as veins at the massif-felsic suite interface, and as rare apophyses within leuconorites at the massif margin. The massif and the bordering felsic rocks were presumably emplaced during the earliest of the three phases of folding documented by the metasedimentary gneisses that host the massif. The petrographic and geochemical characteristics suggest that the low-K anorthosite-leuconoriteferrodiorite suite does not share a common parentage with the bordering high-K felsic intrusives. The anorthosites and leuconorites were derived by polybaric fractionation of mantle-derived melts. The ferrodiorites are anorthosite residual melts that were not entirely segregated from the host solids. By contrast, the granite gneisses and granites originated by incongruent melting of crustal rocks. The chemical differences between quartz monzonite and granite gneisses point to their derivation from different crustal precursors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号