首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   336篇
  免费   34篇
  国内免费   26篇
测绘学   63篇
大气科学   45篇
地球物理   102篇
地质学   87篇
海洋学   58篇
天文学   10篇
综合类   6篇
自然地理   25篇
  2024年   4篇
  2023年   7篇
  2022年   19篇
  2021年   7篇
  2020年   12篇
  2019年   11篇
  2018年   14篇
  2017年   3篇
  2016年   2篇
  2015年   10篇
  2014年   9篇
  2013年   10篇
  2012年   5篇
  2011年   20篇
  2010年   14篇
  2009年   25篇
  2008年   35篇
  2007年   24篇
  2006年   18篇
  2005年   19篇
  2004年   21篇
  2003年   19篇
  2002年   15篇
  2001年   11篇
  2000年   15篇
  1999年   11篇
  1998年   8篇
  1997年   4篇
  1996年   5篇
  1995年   7篇
  1994年   8篇
  1993年   2篇
  1991年   2篇
排序方式: 共有396条查询结果,搜索用时 15 毫秒
11.
In recent years, a number of alternative methods have been proposed to predict forest canopy density from remotely sensed data. To date, however, it remains difficult to decide which method to use, since their relative performance has never been evaluated. In this study the performance of: (1) an artificial neural network, (2) a multiple linear regression, (3) the forest canopy density mapper and (4) a maximum likelihood classification method was compared for prediction of forest canopy density using a Landsat ETM+ image. Comparison of confusion matrices revealed that the regression model performed significantly worse than the three other methods. These results were based on a z-test for comparison of weighted kappa statistics, which is an appropriate statistic for analysis of ranked categories. About 89% of the variance of the observed canopy density was explained by the artificial neural networks, which outperformed the other three methods in this respect. Moreover, the artificial neural networks gave an unbiased prediction, while other methods systematically under or over predicted forest canopy density. The choice of biased method could have a high impact on canopy density inventories.  相似文献   
12.
The measurement of plant water content is essential to assess stress and disturbance in forest plantations. Traditional techniques to assess plant water content are costly, time consuming and spatially restrictive. Remote sensing techniques offer the alternative of a non-destructive and instantaneous method of assessing plant water content over large spatial scales where ground measurements would be impossible on a regular basis. In the context of South Africa, due to the cost and availability of imagery, studies focusing on the estimation of plant water content using remote sensing data have been limited. With the scheduled launch of the South African satellite SumbandilaSat evident in 2009, it is imperative to test the utility of this satellite in estimating plant water content. This study resamples field spectral data measured from a field spectrometer to the band settings of the SumbandilaSat in order to test its potential in estimating plant water content in a Eucalyptus plantation. The resampled SumbandilaSat wavebands were input into a neural network due to its ability to model non-linearity in a dataset and its inherent ability to perform better than conventional linear models. The integrated approach involving neural networks and the resampled field spectral data successfully predicted plant water content with a correlation coefficient of 0.74 and a root mean square error (RMSE) of 1.41% on an independent test dataset outperforming the traditional multiple regression method of estimation. The best-trained neural network algorithm that was chosen for assessing the relationship between plant water content and the SumbandilaSat bands was based on a few points only and more research is required to test the robustness and effectiveness of this sensor in estimating plant water content across different species and seasons. This is critical for monitoring plantation health in South Africa using a cheaply available local sensor containing key vegetation wavelengths.  相似文献   
13.
针对GPS高程转换问题,给出了基于径向基神经网络转换GPS高程的模型。用实际观测数据对该模型进行了试验,结果表明,用径向基神经网络转换GPS高程精度高于二次拟合法和BP神经网络法。径向基神经网络能够有效克服BP神经网络局部极小值的缺点,并且具有较高的收敛速度,在GPS高程转换方面具有广阔应用前景。  相似文献   
14.
李强  王正志 《遥感学报》1999,3(3):193-198
遥感图像计算机分类的精度问题是阻碍计算机遥感信息处理系统实用化的一个关键问题。将分类后处理中的分类结果平滑过程模型化为约束优化问题,采用神经网络方法把分类结果平滑过程与遥感图像分类过程结合起来,提出了基于约束满足神经网络的遥感信息分类与后处理综合技术。实验表明该方法可明显提高森林类型划分、土地利用调查等遥感应用专题的分类精度。  相似文献   
15.
Machine-learning algorithms are applied to explore the relation between significant flares and their associated CMEs. The NGDC flares catalogue and the SOHO/LASCO CME catalogue are processed to associate X and M-class flares with CMEs based on timing information. Automated systems are created to process and associate years of flare and CME data, which are later arranged in numerical-training vectors and fed to machine-learning algorithms to extract the embedded knowledge and provide learning rules that can be used for the automated prediction of CMEs. Properties representing the intensity, flare duration, and duration of decline and duration of growth are extracted from all the associated (A) and not-associated (NA) flares and converted to a numerical format that is suitable for machine-learning use. The machine-learning algorithms Cascade Correlation Neural Networks (CCNN) and Support Vector Machines (SVM) are used and compared in our work. The machine-learning systems predict, from the input of a flare’s properties, if the flare is likely to initiate a CME. Intensive experiments using Jack-knife techniques are carried out and the relationships between flare properties and CMEs are investigated using the results. The predictive performance of SVM and CCNN is analysed and recommendations for enhancing the performance are provided.  相似文献   
16.
多时相Radarsat数据在广东肇庆地区稻田分类中的应用   总被引:11,自引:2,他引:11  
将1996年获取的4个时相的Radarsat图像用于广东肇庆地区的稻田分类试验,结果表明,多时相Radarsat数据对水稻类型的识别精度较高,而且稻田的轮作规律容易推测出来。本文系统地介绍了这一试验研究的最新进展,探讨了神经网络分类方法在SAR图像处理中的应用潜力和Radarsat数据在中国南方水稻监测中的最佳时相选择和有效分辨率问题。  相似文献   
17.
Neural networks are attractive tools for the derivation of thematic maps from remotely sensed data. Most attention has focused on the multilayer perceptron (MLP) network but other network types are available and have different properties that may sometimes be more appropriate for some applications. Here a MLP, radial basis function (RBF) and probabilistic neural network (PNN) were used to classify remotely sensed data of an agricultural site. The accuracy of these classifications ranged from 86.25–91.25%. The accuracy of the PNN classification could be increased through the incorporation of prior probabilities of class membership but the accuracy of each classification could also be degraded by the presence of an untrained class. Post-classification analyses, however, could be used to identify potentially misclassified cases, including those belonging to an untrained class, to increase accuracy. The effect of the post-classification analysis on the accuracy of the classification derived from each of the three network types investigated differed and it is suggested that network type be selected carefully to meet the requirements of the application in-hand. Received: 23 March 2000 / Accepted: 9 July 2000  相似文献   
18.
Use of GIS layers, in which the cell values represent fuzzy membership variables, is an effective method of combining subjective geological knowledge with empirical data in a neural network approach to mineral-prospectivity mapping. In this study, multilayer perceptron (MLP), neural networks are used to combine up to 17 regional exploration variables to predict the potential for orogenic gold deposits in the form of prospectivity maps in the Archean Kalgoorlie Terrane of Western Australia. Two types of fuzzy membership layers are used. In the first type of layer, the statistical relationships between known gold deposits and variables in the GIS thematic layer are used to determine fuzzy membership values. For example, GIS layers depicting solid geology and rock-type combinations of categorical data at the nearest lithological boundary for each cell are converted to fuzzy membership layers representing favorable lithologies and favorable lithological boundaries, respectively. This type of fuzzy-membership input is a useful alternative to the 1-of-N coding used for categorical inputs, particularly if there are a large number of classes. Rheological contrast at lithological boundaries is modeled using a second type of fuzzy membership layer, in which the assignment of fuzzy membership value, although based on geological field data, is subjective. The methods used here could be applied to a large range of subjective data (e.g., favorability of tectonic environment, host stratigraphy, or reactivation along major faults) currently used in regional exploration programs, but which normally would not be included as inputs in an empirical neural network approach.  相似文献   
19.
Li-Jun Zhang  Xue Qi 《Ocean Engineering》2011,38(13):1430-1438
An adaptive output feedback controller based on neural network feedback-feedforward compensator (NNFFC) which drives a surface ship at high speed to track a desired trajectory is designed. The tracking problem of the surface ship at low speed has been widely investigated. However, the coupling interactions among the forces from each degree of freedom (DOF) have not been considered in general. Furthermore, the influence of the hydrodynamic damping is also simplified into a linear form or neglected. On the contrary, coupling interactions and the nonlinear characteristics of the hydrodynamic damping can never be neglected in high speed maneuvering situation. For these reasons, the influence of the nonlinear hydrodynamic damping on the tracking precision is considered in this paper. Since the hydrodynamic coefficients of the surface ship at high speed are very difficult to be accurately estimated as a prior, it will be compensated by NNFFC as an unknown part of the tracking dynamics system. The stability analysis will be given by the Lyapunov theory. It indicates that the proposed control scheme can guarantee that all the signals in the closed-loop system are uniformly ultimately bounded (UUB), and numerical simulations can illustrate the excellent tracking performance of the surface ship at high speed under the proposed control scheme.  相似文献   
20.
Interpolation of wave heights   总被引:1,自引:0,他引:1  
Remote sensing of waves often necessitates presentation of data in the form of wave height values grouped over large time intervals. This restricts their use to long-term applications only. This paper describes how such data can be made suitable for short-term usage in the field. Weekly mean significant wave heights were derived from their monthly mean observations with the help of different alternative techniques. These include model-free neural network schemes as well as model-based statistical and numerical methods. Superiority of neural networks was noted when the estimations were compared with corresponding observations. The network was trained using three different training algorithms, viz., error back propagation, conjugate gradient and cascade correlation. The technique of cascade correlation took minimum training time and showed better coefficient of correlation between observations and network output.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号