首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10736篇
  免费   2000篇
  国内免费   2844篇
测绘学   496篇
大气科学   2340篇
地球物理   2822篇
地质学   4581篇
海洋学   1840篇
天文学   1845篇
综合类   546篇
自然地理   1110篇
  2024年   34篇
  2023年   112篇
  2022年   296篇
  2021年   339篇
  2020年   368篇
  2019年   488篇
  2018年   411篇
  2017年   414篇
  2016年   422篇
  2015年   487篇
  2014年   656篇
  2013年   699篇
  2012年   613篇
  2011年   708篇
  2010年   560篇
  2009年   885篇
  2008年   864篇
  2007年   973篇
  2006年   907篇
  2005年   682篇
  2004年   662篇
  2003年   589篇
  2002年   522篇
  2001年   413篇
  2000年   462篇
  1999年   410篇
  1998年   360篇
  1997年   248篇
  1996年   215篇
  1995年   193篇
  1994年   157篇
  1993年   95篇
  1992年   74篇
  1991年   48篇
  1990年   47篇
  1989年   24篇
  1988年   24篇
  1987年   29篇
  1986年   14篇
  1985年   19篇
  1984年   10篇
  1983年   3篇
  1982年   9篇
  1981年   12篇
  1980年   4篇
  1979年   6篇
  1977年   2篇
  1976年   4篇
  1971年   3篇
  1954年   2篇
排序方式: 共有10000条查询结果,搜索用时 328 毫秒
41.
Large scale geomechanical simulations are being increasingly used to model the compaction of stress dependent reservoirs, predict the long term integrity of under‐ground radioactive waste disposals, and analyse the viability of hot‐dry rock geothermal sites. These large scale simulations require the definition of homogenous mechanical properties for each geomechanical cell whereas the rock properties are expected to vary at a smaller scale. Therefore, this paper proposes a new methodology that makes possible to define the equivalent mechanical properties of the geomechanical cells using the fine scale information given in the geological model. This methodology is implemented on a synthetic reservoir case and two upscaling procedures providing the effective elastic properties of the Hooke's law are tested. The first upscaling procedure is an analytical method for perfectly stratified rock mass, whereas the second procedure computes lower and upper bounds of the equivalent properties with no assumption on the small scale heterogeneity distribution. Both procedures are applied to one geomechanical cell extracted from the reservoir structure. The results show that the analytical and numerical upscaling procedures provide accurate estimations of the effective parameters. Furthermore, a large scale simulation using the homogenized properties of each geomechanical cell calculated with the analytical method demonstrates that the overall behaviour of the reservoir structure is well reproduced for two different loading cases. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
42.
This paper presents a numerical model for predicting the dynamic response of rock mass subjected to large‐scale underground explosion. The model is calibrated against data obtained from large‐scale field tests. The Hugoniot equation of state for rock mass is adopted to calculate the pressure as a function of mass density. A piecewise linear Drucker–Prager strength criterion including the strain rate effect is employed to model the rock mass behaviour subjected to blast loading. A double scalar damage model accounting for both the compression and tension damage is introduced to simulate the damage zone around the charge chamber caused by blast loading. The model is incorporated into Autodyn3D through its user subroutines. The numerical model is then used to predict the dynamic response of rock mass, in terms of the peak particle velocity (PPV) and peak particle acceleration (PPA) attenuation laws, the damage zone, the particle velocity time histories and their frequency contents for large‐scale underground explosion tests. The computed results are found in good agreement with the field measured data; hence, the proposed model is proven to be adequate for simulating the dynamic response of rock mass subjected to large‐scale underground explosion. Extended numerical analyses indicate that, apart from the charge loading density, the stress wave intensity is also affected, but to a lesser extent, by the charge weight and the charge chamber geometry for large‐scale underground explosions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
43.
44.
A computer simulation method has been developed to find efficient drilling grids for mineral deposits. A well-known ore deposit is used as a model to develop an efficient pattern for undiscovered ore bodies in the same area or in other prospects where similar geometry is suspected. The model for this study is the Austinville, Virginia deposit, a Mississippi Valley-type deposit composed of 17 ore bodies totaling 34 million short tons (30 million metric tons). The method employs a computer program that simulates drilling the model deposit with different patterns, including various levels of follow-up drilling. Follow-up holes are drilled in fences at one half the original spacing around holes in the grid that show ore-grade mineralization. Each pattern is drilled 100 times from random starting locations to provide a range of outcomes of drilling, including the best, worst, and most likely. For this study, patterns of 100 drill holes were composed of 10 fences spaced 1000–5000 feet (305–1524 m) apart, each with 10 holes spaced 200–1000 feet (61–305 m) apart. In all, 25 grids were used with zero to three levels of follow-up drilling. The 600/2000 grid, with drill holes spaced 600 feet (183 m) apart in fences spaced 2000 feet (610 m) apart, was compared with the 200/5000 grid because they represented contrasting outcomes. The 600/2000 grid penetrated many ore bodies consistently but with few multiple hits to individual ore bodies; whereas the 200/5000 grid inconsistently penetrated few ore bodies with many multiple hits. The 600/2000 grid was more efficient than the 200/5000 grid at hitting large ore bodies of 1,000,000 short tons or greater (900,000 metric tons or greater) and was made more effective by adding one cycle of follow-up drilling. The 600/2000 grid had a 97% chance of hitting one or more large ore bodies with at least one drill hole per ore body, and the 200/5000 grid had a 64% chance. Once hit, there was an 82% chance that the largest ore body would be penetrated by three or more holes when using the 600/2000 grid and an 88% chance using the 200/5000 grid.  相似文献   
45.
Differential equations describing the tidal evolution of the earth's rotation and of the lunar orbital motion are presented in a simple close form. The equations differ in form for orbits fixed to the terrestrial equator and for orbits with the nodes precessing along the ecliptic due to solar perturbations. Analytical considerations show that if the contemporary lunar orbit were equatorial the evolution would develop from an unstable geosynchronous orbit of the period about 4.42 h (in the past) to a stable geosynchronous orbit of the period about 44.8 days (in the future). It is also demonstrated that at the contemporary epoch the orbital plane of the fictitious equatorial moon would be unstable in the Liapunov's sense, being asymptotically stable at early stages of the evolution. Evolution of the currently near-ecliptical lunar orbit and of the terrestrial rotation is traced backward in time by numerical integration of the evolutional equations. It is confirmed that about 1.8 billion years ago a critical phase of the evolution took place when the equatorial inclination of the moon reached small values and the moon was in a near vicinity of the earth. Before the critical epoch t cr two types of the evolution are possible, which at present cannot be unambiguously distinguished with the help of the purely dynamical considerations. In the scenario that seems to be the most realistic from the physical point of view, the evolution also has started from a geosynchronous equatorial lunar orbit of the period 4.19 h. At t < t cr the lunar orbit has been fixed to the precessing terrestrial equator by strong perturbations from the earth's flattening and by tidal effects; at the critical epoch the solar perturbations begin to dominate and transfer the moon to its contemporary near-ecliptical orbit which evolves now to the stable geosynchronous state. Probably this scenario is in favour of the Darwin's hypothesis about originating the moon by its separation from the earth. Too much short time scale of the evolution in this model might be enlarged if the dissipative Q factor had somewhat larger values in the past than in the present epoch. Values of the length of day and the length of month, estimated from paleontological data, are confronted with the results of the developed model.  相似文献   
46.
A growing body of evidence implies that the concept of 'treeless tundra' in eastern and northern Europe fails to explain the rapidity of Lateglacial and postglacial tree population dynamics of the region, yet the knowledge of the geographic locations and shifting of tree populations is fragmentary. Pollen, stomata and plant macrofossil stratigraphies from Lake Kurjanovas in the poorly studied eastern Baltic region provide improved knowledge of ranges of north‐eastern European trees during the Lateglacial and subsequent plant population responses to the abrupt climatic changes of the Lateglacial/Holocene transition. The results prove the Lateglacial presence of tree populations (Betula, Pinus and Picea) in the eastern Baltic region. Particularly relevant is the stomatal and plant macrofossil evidence showing the local presence of reproductive Picea populations during the Younger Dryas stadial at 12 900–11 700 cal. a BP, occurring along with Dryas octopetala and arctic herbs, indicating semi‐open vegetation. The spread of PinusBetula forest at ca. 14 400 cal. a BP, the rise of Picea at ca. 12 800 cal. a BP and the re‐establishment of PinusBetula forest at ca. 11 700 cal. a BP within a span of centuries further suggest strikingly rapid, climate‐driven ecosystem changes rather than gradual plant succession on a newly deglaciated land. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
47.
48.
We derive the classical Delaunay variables by finding a suitable symmetry action of the three torus T3 on the phase space of the Kepler problem, computing its associated momentum map and using the geometry associated with this structure. A central feature in this derivation is the identification of the mean anomaly as the angle variable for a symplectic S 1 action on the union of the non-degenerate elliptic Kepler orbits. This approach is geometrically more natural than traditional ones such as directly solving Hamilton–Jacobi equations, or employing the Lagrange bracket. As an application of the new derivation, we give a singularity free treatment of the averaged J 2-dynamics (the effect of the bulge of the Earth) in the Cartesian coordinates by making use of the fact that the averaged J 2-Hamiltonian is a collective Hamiltonian of the T3 momentum map. We also use this geometric structure to identify the drifts in satellite orbits due to the J 2 effect as geometric phases.  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号