首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   367篇
  免费   13篇
  国内免费   8篇
大气科学   3篇
地球物理   118篇
地质学   80篇
海洋学   32篇
天文学   151篇
综合类   1篇
自然地理   3篇
  2024年   1篇
  2023年   3篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   6篇
  2016年   8篇
  2015年   1篇
  2014年   11篇
  2013年   13篇
  2012年   1篇
  2011年   52篇
  2010年   46篇
  2009年   30篇
  2008年   41篇
  2007年   30篇
  2006年   19篇
  2005年   14篇
  2004年   23篇
  2003年   16篇
  2002年   19篇
  2001年   6篇
  2000年   3篇
  1999年   9篇
  1998年   7篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   4篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1980年   1篇
排序方式: 共有388条查询结果,搜索用时 15 毫秒
201.
The Mercury Laser Altimeter on the NASA MESSENGER mission has ranged to several ridges and lobate scarps during two equatorial flybys of the planet Mercury. The tectonic features sampled, like others documented by spacecraft imaging and Earth-based radar, are spatially isolated and have vertical relief in excess of 1 km. The profiles also indicate that the faulting associated with their formation penetrated to tens of kilometers depth into the lithosphere and accommodated substantial shortening. To gain insight into the mechanism(s) of strain accommodation across these structures, we perform analytical and numerical modeling of representative dynamic localization mechanisms. We find that ductile localization due to shear heating is not favored, given our current understanding of thermal gradients and shallow thermal structure of Mercury at the time of ridge and scarp formation, and is likely to be of secondary importance at best. Brittle localization, associated with loss of resistance during fault development or with velocity weakening during sliding on mature faults, is weakly localizing but permits slip to accumulate over geological time scales. The range of shallow thermal gradients that produce isolated faults rather than distributed fault sets under the assumption of modest fault weakening is consistent with previous models for Mercury’s early global thermal history. To be consistent with strain rates predicted from thermal history models and the amount of shortening required to account for the underlying large-offset faults, ridges and scarps on Mercury likely developed over geologically substantial time spans.  相似文献   
202.
Images returned by the MESSENGER spacecraft from the Mercury flybys have been examined to search for anomalous high-albedo markings similar to lunar swirls. Several features suggested to be swirls on the basis of Mariner 10 imaging (in the craters Handel and Lermontov) are seen in higher-resolution MESSENGER images to lack the characteristic morphology of lunar swirls. Although antipodes of large impact basins on the Moon are correlated with swirls, the antipodes of the large impact basins on Mercury appear to lack unusual albedo markings. The antipodes of Mercury’s Rembrandt, Beethoven, and Tolstoj basins do not have surface textures similar to the “hilly and lineated” terrain found at the Caloris antipode, possibly because these three impacts were too small to produce obvious surface disturbances at their antipodes. Mercury does have a class of unusual high-reflectance features, the bright crater-floor deposits (BCFDs). However, the BCFDs are spectral outliers, not simply optically immature material, which implies the presence of material with an unusual composition or physical state. The BCFDs are thus not analogs to the lunar swirls. We suggest that the lack of lunar-type swirls on Mercury supports models for the formation of lunar swirls that invoke interaction between the solar wind and crustal magnetic anomalies (i.e., the solar-wind standoff model and the electrostatic dust-transport model) rather than those models of swirl formation that relate to cometary impact phenomena. If the solar-wind standoff hypothesis for lunar swirls is correct, it implies that the primary agent responsible for the optical effects of space weathering on the Moon is solar-wind ion bombardment rather than micrometeoroid impact.  相似文献   
203.
MESSENGER Neutron Spectrometer (NS) observations of cosmic-ray-generated thermal neutrons provide the first direct measurements of Mercury’s surface elemental composition. Specifically, we show that Mercury’s surface is enriched in neutron-absorbing elements and has a measured macroscopic neutron-absorption cross section of 45-81 × 10−4 cm2/g, a range similar to the neutron absorption of lunar basalts from Mare Crisium. The expected neutron-absorbing elements are Fe and Ti, with possible trace amounts of Gd and Sm. Fe and Ti, in particular, are important for understanding Mercury’s formation and how its surface may have changed over time through magmatic processes. With neutron Doppler filtering - a neutron energy separation technique based on spacecraft velocity - we demonstrate that Mercury’s surface composition cannot be matched by prior models, which have characteristically low abundances of Fe, Ti, Gd, and Sm. While neutron spectroscopy alone cannot separate the relative contributions of individual neutron-absorbing elements, these results provide strong new constraints on the nature of Mercury’s surface materials. For example, if all the measured neutron absorption were due to the presence of an Fe-Ti oxide and that oxide were ilmenite, then Mercury’s surface would have an ilmenite content of 7-18 wt.%. This result is in general agreement with the inference from color imaging and visible-near-infrared spectroscopy that Mercury’s overall low reflectance is consistent with a surface composition that is enriched in Fe-Ti oxides. The incorporation of substantial Fe and Ti in oxides would imply that the oxygen fugacity of basalts on Mercury is at the upper range of oxygen fugacities inferred for basalts on the Moon.  相似文献   
204.
MESSENGER’s Mercury Dual Imaging System (MDIS) obtained multispectral images for more than 80% of the surface of Mercury during its first two flybys. Those images have confirmed that the surface of Mercury exhibits subtle color variations, some of which can be attributed to compositional differences. In many areas, impact craters are associated with material that is spectrally distinct from the surrounding surface. These deposits can be located on the crater floor, rim, wall, or central peak or in the ejecta deposit, and represent material that originally resided at depth and was subsequently excavated during the cratering process. The resulting craters make it possible to investigate the stratigraphy of Mercury’s upper crust. Studies of laboratory, terrestrial, and lunar craters provide a means to bound the depth of origin of spectrally distinct ejecta and central peak structures. Excavated red material (RM), with comparatively steep (red) spectral slope, and low-reflectance material (LRM) stand out prominently from the surrounding terrain in enhanced-color images because they are spectral end-members in Mercury’s compositional continuum. Newly imaged examples of RM were found to be spectrally similar to the relatively red, high-reflectance plains (HRP), suggesting that they may represent deposits of HRP-like material that were subsequently covered by a thin layer (∼1 km thick) of intermediate plains. In one area, craters with diameters ranging from 30 km to 130 km have excavated and incorporated RM into their rims, suggesting that the underlying RM layer may be several kilometers thick. LRM deposits are useful as stratigraphic markers, due to their unique spectral properties. Some RM and LRM were excavated by pre-Tolstojan basins, indicating a relatively old age (>4.0 Ga) for the original emplacement of these deposits. Detailed examination of several small areas on Mercury reveals the complex nature of the local stratigraphy, including the possible presence of buried volcanic plains, and supports sequential buildup of most of the upper ∼5 km of crust by volcanic flows with compositions spanning the range of material now visible on the surface, distributed heterogeneously across the planet. This emerging picture strongly suggests that the crust of Mercury is characterized by a much more substantial component of early volcanism than represented by the phase of mare emplacement on Earth’s Moon.  相似文献   
205.
Christian Klimczak 《Icarus》2010,209(1):262-270
The origin of Pantheon Fossae, a complex structure consisting of radial graben in the center of the Caloris basin, Mercury, has been debated since the structure was first imaged by the MESSENGER spacecraft. Three different formation hypotheses have been suggested, i.e. an origin associated with the Apollodorus impact into a previously domed Caloris basin floor, graben formation as surface expressions of dike intrusions and basin-interior uplift alone. In order to test the scenarios, detailed observations from the currently available imagery were compared to the proposed formation mechanisms. We evaluate these origin hypotheses by means of detailed interpretations of the graben characteristics and patterns, by comparing to radial structures from Earth and Venus, and by mechanical analyses for each formation hypothesis. Results indicate that the formation of Pantheon Fossae as the result of doming in the central part of the Caloris basin is more likely than it having formed in association with a radially symmetric stress field centered at or near the Apollodorus crater, that would have been created by a magma chamber or been superimposed on a pre-existing dome due to impact mechanics.  相似文献   
206.
Mikael Beuthe 《Icarus》2010,209(2):795-817
Contraction, expansion and despinning have been common in the past evolution of Solar System bodies. These processes deform the lithosphere until it breaks along faults. Their characteristic tectonic patterns have thus been sought for on all planets and large satellites with an ancient surface. While the search for despinning tectonics has not been conclusive, there is good observational evidence on several bodies for the global faulting pattern associated with contraction or expansion, though the pattern is seldom isotropic as predicted. The cause of the non-random orientation of the faults has been attributed either to regional stresses or to the combined action of contraction/expansion with another deformation (despinning, tidal deformation, reorientation). Another cause of the mismatch may be the neglect of the lithospheric thinning at the equator or at the poles due either to latitudinal variation in solar insolation or to localized tidal dissipation. Using thin elastic shells with variable thickness, I show that the equatorial thinning of the lithosphere transforms the homogeneous and isotropic fault pattern caused by contraction/expansion into a pattern of faults striking east-west, preferably formed in the equatorial region. By contrast, lithospheric thickness variations only weakly affect the despinning faulting pattern consisting of equatorial strike-slip faults and polar normal faults. If contraction is added to despinning, the despinning pattern first shifts to thrust faults striking north-south and then to thrust faults striking east-west. If the lithosphere is thinner at the poles, the tectonic pattern caused by contraction/expansion consists of faults striking north/south. I start by predicting the main characteristics of the stress pattern with symmetry arguments. I further prove that the solutions for contraction and despinning are dual if the inverse elastic thickness is limited to harmonic degree two, making it easy to determine fault orientation for combined contraction and despinning. I give two methods for solving the equations of elasticity, one numerical and the other semi-analytical. The latter method yields explicit formulas for stresses as expansions in Legendre polynomials about the solution for constant shell thickness. Though I only discuss the cases of a lithosphere thinner at the equator or at the poles, the method is applicable for any latitudinal variation of the lithospheric thickness. On Iapetus, contraction or expansion on a lithosphere thinner at the equator explains the location and orientation of the equatorial ridge. On Mercury, the combination of contraction and despinning makes possible the existence of zonal provinces of thrust faults differing in orientation (north-south or east-west), which may be relevant to the orientation of lobate scarps.  相似文献   
207.
Measurements of the disk-integrated reflectance spectrum of Mercury and the Moon have been obtained by the MESSENGER spacecraft. A comparison of spectra from the two bodies, spanning the wavelength range 220-1450 nm, shows that the absolute reflectance of Mercury is lower than that of the nearside waxing Moon at the same phase angle with a spectral slope that is less steep at visible and near-infrared wavelengths. We interpret these results and the lack of an absorption feature at a wavelength near 1000 nm as evidence for a Mercury surface composition that is low in ferrous iron within silicates but is higher in the globally averaged abundance of spectrally neutral opaque minerals than the Moon. Similar conclusions have been reached by recent investigations based on observations from both MESSENGER and Mariner 10. There is weak evidence for a phase-reddening effect in Mercury that is slightly larger in magnitude than for the lunar nearside. An apparent absorption in the middle-ultraviolet wavelength range of the Mercury spectrum detected from the first MESSENGER flyby of Mercury is found to persist in subsequent observations from the second flyby. The current model of space weathering on the Moon, which also presumably applies to Mercury, does not provide an explanation for the presence of this ultraviolet absorption.  相似文献   
208.
D.A. Rothery  M. Massironi 《Icarus》2010,209(1):256-261
Thanks to its location at low latitude and close to the terminator in the outbound view of Mercury obtained during MESSENGER’s first fly-by, the Beagle Rupes lobate scarp on Mercury has been particularly clearly imaged. This enables us to interpret it as a component of a linked fault system, consisting of a frontal scarp terminated by transpressive lateral ramps. The terrain bounded by these surface manifestations of faulting is the hanging-wall block of a thrust sheet and must be underlain by a basal decollement (a detachment horizon) constituting the fault zone at depth. The decollement must extend a minimum of 150 km eastwards from the frontal scarp, and at least 400 km if displacement is transferred to features interpreted as out-of-sequence thrusts and offset lateral ramps that appear to continue the linked fault system to the east. The depth of the basal decollement could be controlled by crustal stratigraphy or by rheological change within, or at the base of, the lithosphere. Previous interpretations of mercurian lobate scarps regard their thrusts as uniformly dipping and dying out at depth, lacking lateral ramps and any extensive detachment horizon. Anticipated improvements in image resolution and lighting geometry should make it possible to document what percentage of lobate scarps share the Beagle Rupes style of tectonics.  相似文献   
209.
The shaking of Mercury’s orbit by the planets forces librations in longitude in addition to those at harmonics of the orbital period that have been used to detect Mercury’s molten core. We extend the analytical formulation of Peale et al. (Peale, S.J., Margot, J.L., Yseboodt, M. [2009]. Icarus 199, 1-8) in order to provide a convenient means of determining the amplitudes and phases of the forced librations without resorting to numerical calculations. We derive an explicit relation between the amplitude of each forced libration and the moment of inertia parameter (B-A)/Cm. Far from resonance with the free libration period, the libration amplitudes are directly proportional to (B-A)/Cm. Librations with periods close to the free libration period of ∼12 years may have measurable (∼arcsec) amplitudes. If the free libration period is sufficiently close to Jupiter’s orbital period of 11.86 years, the amplitude of the forced libration at Jupiter’s period could exceed the 35 arcsec amplitude of the 88-day forced libration. We also show that the planetary perturbations of the mean anomaly and the longitude of pericenter of Mercury’s orbit completely determine the libration amplitudes.While these signatures do not affect spin rate at a detectable level (as currently measured by Earth-based radar), they have a much larger impact on rotational phase (affecting imaging, altimetry, and gravity sensors). Therefore, it may be important to consider planetary perturbations when interpreting future spacecraft observations of the librations.  相似文献   
210.
Quantifying mercury (Hg) emissions from active volcanoes is of particular interest for better constraining the global cycle and environmental impact of this highly toxic element. Here we report on the abundance of total gaseous (TGM = Hg0(g) + HgII(g)) and particulate (Hg(p)) mercury in the summit gas emissions of La Soufrière andesitic volcano (Guadeloupe island, Lesser Antilles), where enhanced degassing of mixed hydrothermal-magmatic volatiles has been occurring since 1992 from the Southern summit crater. We demonstrate that Hg in volcanic plume occurs predominantly as gaseous mercury, with a mean TGM/Hg(p) mass ratio of ~ 63. Combining the mean TGM/H2S mass ratio of the volcanic plume (~ 3.2 × 10− 6), measured close to the source vent, with the H2S plume flux (~ 0.7 t d− 1), determined simultaneously, allows us to estimate a gaseous mercury emission rate of 0.8 kg yr− 1 from La Soufrière summit dome. Somewhat lower TGM/Stot mass ratio in fumarolic gases from the source vent (4.4 × 10− 7) suggests that plume chemical composition is not well represented by the emission source (fumaroles) due to chemical processes prior to (or upon) discharge. Current mercury emission from La Soufrìere volcano represents a very small contribution to the estimated global volcanic budget for this element.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号