首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   537篇
  免费   71篇
  国内免费   73篇
测绘学   1篇
大气科学   26篇
地球物理   50篇
地质学   442篇
海洋学   40篇
天文学   15篇
综合类   13篇
自然地理   94篇
  2023年   3篇
  2022年   14篇
  2021年   19篇
  2020年   14篇
  2019年   32篇
  2018年   12篇
  2017年   24篇
  2016年   20篇
  2015年   25篇
  2014年   26篇
  2013年   38篇
  2012年   18篇
  2011年   33篇
  2010年   31篇
  2009年   32篇
  2008年   39篇
  2007年   33篇
  2006年   36篇
  2005年   36篇
  2004年   16篇
  2003年   17篇
  2002年   23篇
  2001年   28篇
  2000年   15篇
  1999年   8篇
  1998年   15篇
  1997年   20篇
  1996年   12篇
  1995年   11篇
  1994年   8篇
  1993年   5篇
  1992年   5篇
  1991年   4篇
  1990年   4篇
  1989年   1篇
  1988年   2篇
  1985年   1篇
  1984年   1篇
排序方式: 共有681条查询结果,搜索用时 93 毫秒
1.
Since the late 1950's, many Chinese scientists have explored the remains of the Quaternary glaciation in the Qinghai-Xizang (Tibet) Plateau and its surrounding mountains. In the main, 3-4 glaciations have been recognized. The largest one occurred in the Late Middle Pleistocene with piedmont glaciers, ice caps and trellis valley glaciers in many high peak regions. But here is no evidence of a unified ice sheet covering the whole plateau as described by M. Kuhle. Due to the further uplifting of the Himalayas and Qinghai-Xizang Plateau the climate became progressively drier, diminishing the extension of glaciers during the Late Pleistocene. The elevation of the snow line during the Last Glaciation was about 4,000 m on the south, east and northeast edges of the plateau and ascended to 5500 m on the hinder northwest of the plateau. The thermal effect of the big plateau massif, the sharp increase of aridity from the southeast rim to the northwest inland area and the abrupt decrease of precipitation during the  相似文献   
2.
Two sites in the eastern Fram Strait, the Vestnesa Ridge and the Yermak Plateau, have been surveyed and sampled providing a depositional record over the last glacial‐interglacial cycle. The Fram Strait is the only deep‐water connection from the Arctic Ocean to the North Atlantic and contains a marine sediment record of both high latitude thermohaline flow and ice sheet interaction. On the Vestnesa Ridge, the western Svalbard margin, a sediment drift was identified in 1226 m of water. Gravity and multicores from the crest of the drift recovered turbidites and contourites. 14C dating indicates an age range of 8287 to 26 900 years BP (Early Holocene to Late Weichselian). The Yermak Plateau is characterized by slope sediments in 961 m of water. Gravity and multicores recovered contourites and hemipelagites. 14C ages were between 8615 and 46 437 years BP (Early Holocene to mid‐Weichselian). Downcore dinoflagellate cyst analyses from both sites provide a record of changing surface water conditions since the mid‐Weichselian, suggesting variable sea ice extent, productivity and polynyas present even during the Last Glacial Maximum. Four layers of ice‐rafted debris were also identified and correlated within the cores. These events occurred ca at 9, 24 to 25, 26 to 27 and 43 ka, asynchronous with Heinrich layers in the wider north‐east Atlantic and here interpreted as reflecting instability in the Svalbard/Barents Ice sheet and the northward advection of warm Atlantic water during the Late Weichselian. The activity of the ancestral West Spitsbergen Current is interpreted using mean sortable silt records from the cores. On the Vestnesa Ridge drift the modern mass accumulation rate, calculated using excess 210Pb, is 0·076 g cm?2 year?1. On the Yermak Plateau slope the modern mass accumulation rate is 0·053 g cm?2 year?1.  相似文献   
3.
张永双  赵希涛 《地质学报》2008,82(2):262-268
在云南省西北部德钦县古水一带深切的澜沧江河谷中,发现了一套第四纪湖相沉积物,以纹层状粘土、粉砂质粘土和粉砂的互层组合为特征,构成了第三和第四级阶地的基座.笔者对该湖相剖面进行了U系、孢粉和若干地球化学指标的分析测试,并以这些结果讨论了古湖的形成时代和成因,以及古湖堆积时期的古植被和古气候.剖面顶部、中部和中下部粘土的U系法年龄测定结果分别为52.3±3.4 ka、64.2±5.6 ka和81.9±6.5 ka,说明古水古湖形成于晚更新世早中期的末次间冰期晚期和末次冰期的早冰阶与间冰阶早期,很可能是大型冰川(如下游的明永冰川等)或巨量的冰水沉积物堰塞了澜沧江河谷而造成的结果.  相似文献   
4.
渤、黄、东海陆架底质的形成分布与末次盛冰期之后的海侵密切相关。末次盛冰期结束、海侵开始以来 ,潮流是渤、黄、东海陆架上的永久性主导作用应力。为从长期沉积动力演变过程的角度 ,探讨渤、黄、东海陆架底质形成分布的有关成因问题 ,利用数值模拟手段 ,再现了末次盛冰期以来 6个时期渤、黄、东海陆架潮流作用下海底的冲淤格局及底质分布。结果表明 ,扬子浅滩南侧东海外陆架的砂质沉积基本上是自 - 80 m海面以来形成的。扬子浅滩形成于 -5 2 m海面之后 ,至 - 3 0 m海面时已有一定规模 ,全新世最大海侵之后 ,逐渐形成现在规模的扬子浅滩。南黄海中部泥自 - 5 2 m海面时就已开始形成 ,- 3 0 m海面时范围很大 ,侵入北黄海 ,全新世最大海侵以来 ,逐渐调整到现在的范围。渤海中央泥、北黄海西部泥、浙闽岸外泥、辽东半岛西侧与北侧的砂质沉积、西朝鲜湾与江华湾中的砂质沉积以及苏北浅滩是自全新世最大海侵以来逐渐形成的。海州湾中砂质沉积形成的盛期在公元 8世纪之后。济洲岛西南泥、南黄海东部泥很可能分别形成于 - 3 0 m海面、- 5 2 m海面以来。全新世渤、黄、东海陆架底质分布的演变过程大致分为 2个阶段 :全新世最大海侵之前为渤、黄、东海陆架底质分布宏观格局的形成阶段 ;全新世最大海侵至今为渤  相似文献   
5.
Palynological, sedimentological and stable isotopic analyses of carbonates and organic matter performed on the El Portalet sequence (1802 m a.s.l., 42°48′00?N, 0°23′52?W) reflect the paleoclimatic evolution and vegetation history in the central-western Spanish Pyrenees over the last 30,000 yr, and provide a high-resolution record for the late glacial period. Our results confirm previous observations that deglaciation occurred earlier in the Pyrenees than in northern European and Alpine sites and point to a glacial readvance from 22,500 to 18,000 cal yr BP, coinciding with the global last glacial maximum. The patterns shown by the new, high-resolution pollen data from this continental sequence, chronologically constrained by 13 AMS 14C dates, seem to correlate with the rapid climate changes recorded in Greenland ice cores during the last glacial-interglacial transition. Abrupt events observed in northern latitudes (Heinrich events 3 to 1, Oldest and Older Dryas stades, Intra-Allerød Cold Period, and 8200 cal yr BP event) were also identified for the first time in a lacustrine sequence from the central-western Pyrenees as cold and arid periods. The coherent response of the vegetation and the lake system to abrupt climate changes implies an efficient translation of climate variability from the North Atlantic to mid latitudes.  相似文献   
6.
Composition and distribution of benthic foraminifers, being coupled with isotopic-geochemical data on Upper Pleistocene and Holocene sediments from the southern Bering Sea (Core GC-11; 53°31′ N, 178°51′E, water depth 3060 m), demonstrate variations in bottom water properties during the last 54 kyr. Their abundance increased to some extent during short periods corresponding to warm Dansgaard-Oeshger interstadials 14, 12, 8, and 2 of marine isotopic stages (MIS) 3 and 2. The first and second deglaciation phases separated by the Younger Dryas cooling episode are marked by significant abundance peaks of benthic foraminifers (an order magnitude higher than in the glacial period), although their share in community of benthic and planktonic foraminifers taken together decreases. Species typical of stable high-productivity areas gain the dominant position. A significant proportion of agglutinated species in the Holocene sediments is indicative of Ca ions deficiency that accelerates dissolution of carbonate tests up to their disappearance approximately 2.5–3 ka ago.  相似文献   
7.
Chironomid, pollen, and rhizopod records from a permafrost sequence at Bol’shoy Lyakhovsky Island (New Siberian Archipelago) document the development of a thermokarst palaeo-lake and environmental conditions in the region during the last Interglacial (MIS 5e). Open Poaceae and Artemisia associations dominated vegetation at the beginning of the interglacial period. Rare shrub thickets (Salix, Betula nana, Alnus fruticosa) grew in more protected and wetter places as well. Saalian ice wedges started to melt during this time, resulting in the formation of an initial thermokarst water body. The high percentage of semi-aquatic chironomids suggests that a peatland-pool initially existed at the site. A distinct decrease in semi-aquatic chironomid taxa and an increase in lacustrine ones point to a gradual pooling of water in the basin, which could in turn induce thermokarst and create a permanent pond during the subsequent period. The highest relative abundance of Chironomus and Procladius reflects unfrozen water remaining under the ice throughout the ice-covered period during the later stage of palaeo-lake development. The chironomid record points to three successive stages during the history of the lake: (1) a peatland pool; (2) a pond (i.e., shallower than the maximum ice-cover thickness); and (3) a shallow lake (i.e., deeper than the maximum ice-cover thickness). The trend of palaeo-lake development indicates that intensive thermokarst processes occurred in the region during the last Interglacial. Shrub tundra communities with Alnus fruticosa and Betula nana dominated the vegetation during the interglacial optimum. The climate was moister and warmer than present. The results of this study suggest that quantitative chironomid-based temperature reconstructions from Arctic thermokarst ponds/lakes may be problematic due to other key environmental factors, such as prolonged periods of winter anoxia and local hydrological/geomorphological processes, controlling the chironomid assemblages.  相似文献   
8.
马鞍山的古冰川地貌   总被引:1,自引:0,他引:1  
罗成德 《地理科学》1997,17(3):285-288
马鞍山是四川盆地西南边缘第一高山。此山存在第四纪冰川地貌。它是我国东部一处典型的古冰川地貌,时代属末次冰期与新冰期。  相似文献   
9.
Lithology, pollen, macrofossils, and stable carbon isotopes from an intermontane basin bog site in southern New Zealand provide a detailed late-glacial and early Holocene vegetation and climate record. Glacial retreat occurred before 17,000 cal yr B.P., and tundra-like grassland–shrubland occupied the basin shortly after. Between 16,500 and 14,600 cal yr B.P., a minor regional expansion of forest patches occurred in response to warming, but the basin remained in shrubland. Forest retreated between 14,600 and 13,600 cal yr B.P., at about the time of the Antarctic Cold Reversal. At 13,600 cal yr B.P., a steady progression from shrubland to tall podocarp forest began as the climate ameliorated. Tall, temperate podocarp trees replaced stress-tolerant shrubs and trees between 12,800 and 11,300 cal yr B.P., indicating sustained warming during the Younger Dryas Chronozone (YDC). Stable isotopes suggest increasing atmospheric humidity from 11,800 to 9300 cal yr B.P. Mild (annual temperatures at least 1°C higher than present), and moist conditions prevailed from 11,000 to 10,350 cal yr B.P. Cooler, more variable conditions followed, and podocarp forest was completely replaced by montane Nothofagus forest at around 7500 cal yr B.P. with the onset of the modern climate regime. The Cass Basin late-glacial climate record closely matches the Antarctic ice core records and is in approximate antiphase with the North Atlantic.  相似文献   
10.
Pollen and charcoal records from two large, shallow lakes reveal that throughout most of the past 50,000 yr Noel Kempff Mercado National Park, in northeastern lowland Bolivia (southwestern Amazon Basin), was predominantly covered by savannas and seasonally dry semideciduous forests. Lowered atmospheric CO2 concentrations, in combination with a longer dry season, caused expansion of dry forests and savannas during the last glacial period, especially at the last glacial maximum. These ecosystems persisted until the mid-Holocene, although they underwent significant species reassortment. Forest communities containing a mixture of evergreen and semideciduous species began to expand between 6000 and 3000 14C yr B.P. Humid evergreen rain forests expanded to cover most of the area within the past 2000 14C yr B.P., coincident with a reduction in fire frequencies. Comparisons between modern pollen spectra and vegetation reveal that the Moraceae-dominated rain forest pollen spectra likely have a regional source area at least 2-3 km beyond the lake shore, whereas the grass- and sedge-dominated savanna pollen spectra likely have a predominantly local source area. The Holocene vegetation changes are consistent with independent paleoprecipitation records from the Bolivian Altiplano and paleovegetation records from other parts of southwestern Amazonia. The progressive expansion in rain forests through the Holocene can be largely attributed to enhanced convective activity over Amazonia, due to greater seasonality of insolation in the Southern Hemisphere tropics driven by the precession cycle according to the Milankovitch Astronomical Theory.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号