首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   249篇
  免费   10篇
  国内免费   30篇
测绘学   9篇
大气科学   11篇
地球物理   58篇
地质学   124篇
海洋学   38篇
综合类   7篇
自然地理   42篇
  2022年   1篇
  2021年   2篇
  2020年   4篇
  2019年   9篇
  2018年   7篇
  2017年   13篇
  2016年   16篇
  2015年   4篇
  2014年   10篇
  2013年   14篇
  2012年   6篇
  2011年   8篇
  2010年   8篇
  2009年   18篇
  2008年   16篇
  2007年   22篇
  2006年   24篇
  2005年   24篇
  2004年   16篇
  2003年   14篇
  2002年   12篇
  2001年   10篇
  2000年   8篇
  1999年   5篇
  1998年   7篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
排序方式: 共有289条查询结果,搜索用时 15 毫秒
251.
A nonlinear theory for the generation of the Ulleung Warm Eddy (UWE) is proposed. Using the nonlinear reduced gravity (shallow water) equations, it is shown analytically that the eddy is established in order to balance the northward momentum flux (i.e., the flow force) exerted by the separating western boundary current (WBC). In this scenario, the presence of β produces a southward (eddy) force balancing the northward momentum flux imparted by the separating East Korean Warm Current (EKWC).It is found that, for a high Rossby number EKWC (i.e., highly nonlinear current), the eddy radius is roughly 2Rd/ε1/6 (here εβRd/f0, where Rd is the Rossby radius), implying that the UWE has a scale larger than that of most eddies (Rd). This solution suggests that, in contrast to the familiar idea attributing the formation of eddies to instabilities (i.e., the breakdown of a known steady solution), the UWE is an integral part of the steady stable solution. The solution also suggests that a weak WBC does not produce an eddy (due to the absence of nonlinearity).A reduced gravity numerical model is used to further analyze the relationship between β, nonlinearity and the eddy formation. First, we show that a high Rossby number WBC which is forced to separate from the wall on an f plane does not produce an eddy near the separation. To balance the northward momentum force imparted by the nonlinear boundary current, the f plane system moves constantly offshore, producing a southward Coriolis force. We then show that, as β is introduced to the problem, an anticyclonic eddy is formed. The numerical balance of forces shows that, as suggested by the analytical reasoning, the southward force produced by the eddy balances the northward flow force imparted by the boundary current. We also found that the observed eddy scale in the Japan/East Sea agrees with the analytical estimate for a nonlinear current.  相似文献   
252.
The stone pagoda of the Bunhwangsa temple in Republic of Korea was made of piling small brick-shaped stones. The majority of stone bricks are andesitic rocks with variable geneses. Rock properties of the pagoda roof suffer partial significant deterioration, such as multiple peel-offs, exfoliation, onion-peel-like decomposition, cracks forming round lines and falling-off stone pieces. The stylobates and tabernacles at the four corners are composed of granitic rocks, which are heavily contaminated by lichens and mosses. Some of these contamination marks show dark black or yellowish brown colors by inorganic secondary hydrates. The four tabernacles and northern face of the pagoda body have been exposed to relatively high humidity, which causes light gray efflorescence as stalactites between the northern and western sides of the body. The efflorescences are composed of calcite, gypsum and clay minerals. The stone lion statues at the southeast and northeast corners are made of alkali granite, while the others are lithic tuff. Total rock properties of the pagoda consist of 9,708 stone bricks. Among them, 11.0% are fractured, 6.7% are fallen off, and 7.0% show considerable surface efflorescence, which shows that the pagoda has been highly deteriorated by physical, chemical and biological weathering. The authors strongly suggest long-term monitoring and comprehensive conservation researches.  相似文献   
253.
Abstract   Ophiolites and high-pressure (HP) metamorphic rocks are studied to test continuation of Paleozoic and early Mesozoic geological units from Japan to Primorye over the Japan Sea. The early Paleozoic ophiolites are present on both sides, and the late Paleozoic ophiolite of south-western Japan may also have its counterpart in Primorye. The Shaiginskiy HP schist and the associated Avdakimov gneiss in Primorye, both tectonically underlying the early Paleozoic ophiolitic complex, yield a 250-Ma phengite and hornblende K–Ar age, which is intermediate between those of the Renge (280–330 Ma) and Suo (170–220 Ma) blueschists in south-western Japan. This age also coincides with that of the coesite-bearing eclogites in the Sulu–Dabie suture in China and several medium-pressure metamorphic rocks in East Asia. On the basis of these results and other geological data, the authors propose the 'Yaeyama promontory' model for an eastward extension of the Sulu–Dabie suture. The collision suture warps southward into the Yellow Sea and detours around Korea, turns to the north at Ishigaki Island in the Yaeyama Archipelago of Ryukyu, where it changes into a subduction zone and further continues toward south-western Japan and Primorye. Most ophiolites from this area represent crust–mantle fragments of an island arc–back-arc basin system, and the repeated formation of ophiolite–blueschist associations may be due to the repetition of the Mariana-type non-accreting subduction and Nankai-type accreting subduction.  相似文献   
254.
This study evaluates the pollution load on a creek based on the physicochemical and mineralogical properties of old tailings. The Sanggok mine is one of the largest lead–zinc producers in the Hwanggangri mining district, Republic of Korea. The vertical profile of the old tailings in the mine area can be divided into three units based on color change, and mineralogical and textural variations, as well as physical and chemical properties. Unit I (surface accumulation and oxidized heterogeneous tailing soil) has lower pH and higher Eh than unit II (originally unoxidized dumped tailing soil) and unit III (pebble-bearing bottom soil). The conductivity data indicates that unit I and II have very high values compared to unit III and basement. The mine area consists mainly of carbonate rocks; however, mineral constituents of tailing soil and sediments near the mine were mainly composed of quartz, mica, feldspar, amphibole, calcite, dolomite, magnesite, and clay minerals. Units I and II are characterized by high abundances of siderite, locally pyrite, and dolomite. Precipitates in the mining drainage mainly included: smectite, illite, berthierine, quartz, siderite, hexahydrite, and Ca-ferrate. Among the separated metallic minerals, tailing soils and sediments of highly concentrated toxic metals are found: some pyrite, arsenopyrite, chalcopyrite, sphalerite, galena, malachite, goethite, various hydroxide, and uncertain secondary minerals. Units I and II are characterized by relatively high concentrations of Ca, Fe, Mn and low contents of Al, Mg, K, Na, Ti, rare earth elements (REEs) that correlated with the proportion of secondary minerals. Potentially toxic elements such as Ag, As, Cd, Cu, Pb, Sb, and Zn are highly enriched in the upper two units. This metal concentration can be influenced by changes in the depth because of oxic and suboxic zonal distribution. The removal zone (unit I) has probably migrated below the elevation of the maximum enrichment layer due to deepening of the oxic/suboxic boundary. In most of the materials, the enrichment index is higher than 3.62. The highest value of 42.55 is found in the oxidation surface soils of the tailing pile. An average enrichment index of the profiles and precipitates are 27.62 and 22.62, respectively. Rocky basement soils have an average enrichment index of 6.63, which is influenced by overlying the tailing pile. The water quality and habitat of the Sanggok creek are severely polluted. Polluted surface water may also negatively impact the agricultural soil and groundwater.  相似文献   
255.
The prehistoric Bangudae Petroglyph in the Ulsan area represents an outstanding National Treasure of the Republic of Korea. Since the construction of the Sayeon dam, the petroglyph with about two hundred carvings is periodically submerged by the Sayeon reservoir. The danger of increasing damage has resulted in intensive efforts to protect this cultural heritage. Diagnosis and risk prognosis studies were carried out. Results of petrographical studies, monument mapping and in situ measurements are presented. Types, degree and zonation of damage are evaluated. The risk estimation derived from the studies confirms the necessity of preservation measures.  相似文献   
256.
韩国经济发展及经验借鉴   总被引:8,自引:1,他引:8  
本文首先评价了韩国经济发展的自然、社会条件,然后分三个阶段回顾了韩国经济的发展历程,并在此基础上总结了韩国经济的发展特征,及对中国在今后发展过程中的启示。  相似文献   
257.
Abstract. Isotope composition of whole rock sulfur has been measured on 14 schists, 10 gneisses, 7 gabbroids, 7 granitoids and 2 sedimentary rocks, with of 9 sulfide (pyrite) sulfurs in gabbros and granitoids, from the southwestern part of the Ryeongnam Massif, Korea. The δ34S values of schists range from -4.6 to +6.1 % (average +0.9 %), those of gneisses from -4.0 to +0.8 % (-1.9%), those of gabbroids from -2.3 to +3.7 % (+1.0 %), and those of granitoids from -5.9 to +3.2 % (-1.9 %). The δ34S values of pyrite separated from gabbros and granitoids show rather heavier values ranging from +3.1 to +9.4 % with an average of+5.8%.
Though the δ34S values of whole rock sulfur give wide range of -5.9 to +6.1 %, the average of about -0.5 % is close to the mantle value. The granitoids sampled at the central parts of intrusive bodies or at the contacts with other plutonic rocks tend to show positive values, while those sampled near the boundary with basement rocks such as granitic gneiss and por-phyroblastic gneiss show negative values. Though the reason of this tendency is not clear at present, the δ34S values of some granitoids in this area seem to represent possible influence by the assimilation of country rocks, particularly of gneisses.
Average isotopic compositions of ore sulfur from individual metal deposits in the studied area are summarized to have a range of+1.0 to +7.8 % with an average value of+3.2 %. The values are consistent with the previous finding that the ore sulfur isotopic values of the Ryeongnam Massif are the lowest among the four tectonic belts in Korea; Gyeonggi Massif, Ogcheon Belt, Ryeongnam Massif, and Gyeongsang Basin. This feature may reflect the isotopic compositions of plutonic rocks and basements in this area, which are characterized by relatively low values around zero permil.  相似文献   
258.
Abstract: The Daejang mine is located within the Cretaceous Gyeongsang basin. Mineral paragenesis can be divided into four stages (stages I, II, III and IV) by major tectonic fracturing. Stages I, III and IV are economically barren. Stage II, at which the precipitation of major ore minerals occurred, is further divided into three substages with paragenetic time based on minor fractures and discernible mineral assemblages: substage IIa, marked by deposition of quartz and Fe–sulfides; substage IIb, by introduction of base-metal sulfides within carbonates and some quartz; substage IIc, by quartz and carbonates with various sulfosalts. Fluid inclusion data indicate a complex geochemical evolution of hydrothermal fluids. Both CO2–rich and H2O–rich fluids were trapped in fluid inclusions at stage I and substage IIa. It is suggested that a compositionally heterogeneous fluid was formed by fluid boiling and CO2 immiscibility at temperatures of about 400° to 300°C. Composite lodes of base-metal sul–fides, carbonates and quartz at substage IIb were deposited in open spaces created by fracturing. The fracturing event prompted rapid decreases in pressure and temperature of residual fluids and resulted in retrograde fluid boiling at about 200 bars and 300°–250°C during substage IIb. The progressive loss of CO2 by CO2 effervescence and retrograde boiling from substage IIa and IIb fluids resulted in pH increase and related increase in carbonate activity, causing deposition of abundant carbonates. The change in pH also caused the decrease of stability of hydrogen sulfide with Cu, Zn and Pb chloride complexes (as main transporting agents at Daejang) and resulted in the pricipitation of base-metal minerals. Deposition of Ag– and Sb-bearing sul–fides and sulfosalts of substage IIc occurred at temperatures of about 250° to 150°C from a dominantly aqueous fluid with low salinity (down to 3. 0 equiv. wt % NaCl). At this substage, aqueous fluid formed by mixing with cooler and less saline meteoric groundwater. There is a systematic decrease in caculated δ18Owater values with the mineralization stage (and decreasing temperature) in the Daejang hydrothermal system, from values of about 11% for stage I, through about 4% for stages II and III, to about –3 per mil for stage IV. The result of stable isotope and fluid inclusion studies are interpreted to indicate progressive less evolved and/or unexchanged meteoric water influx of an early hydrothermal system formed by highly evolved meteoric waters.  相似文献   
259.
江浙地区与韩国城市化水平对比分析   总被引:1,自引:0,他引:1  
城市化是我国新世纪的一大战略,江浙地区是我国经济最发达的地区,理应在全国城市化进程中发挥更大的作用。文章分析了江浙地区(包括上海市、江苏省、浙江省)的城市体系现状,通过与韩国城市体系的对比,指出江浙地区的城市化要想走在全国的前列,必须发展大城市、特大城市;建立完善的城市体系,必须大中小城市协调发展,特别是注重大城市、特大城市的发展。本文并根据江浙地区发展的动态变化和潜力分析,勾勒出该地区未来城市体系的蓝图,对于指导地区乃至全国的城市体系建设具有一定的借鉴作用。  相似文献   
260.
In-Chang Ryu 《Island Arc》2002,11(3):149-169
Abstract Carbonate breccias occur sporadically in the Lower–Middle Ordovician Maggol Limestone exposed in the Taebacksan Basin in the northeastern part of the northeast–southwest‐trending Ogcheon Belt, South Korea. These carbonate breccias have been previously interpreted as intraformational or fault‐related breccias. Thus, little attention has been focused on tectonic and stratigraphic significance of these carbonate breccias. The present study, however, indicates that the majority of these carbonate breccias are solution–collapse breccias, which are causally linked to paleokarstification. Carbonate facies analysis in conjunction with conodont biostratigraphy suggests that an overall regression toward the top of the Maggol Limestone probably culminated in subaerial exposure of platform carbonates during the early Middle Ordovician (earliest Darriwilian). Extensive subaerial exposure of platform carbonates resulted in paleokarst‐related solution–collapse breccias in the upper Maggol Limestone. This subaerial exposure event is manifested as a major paleokarst unconformity at the Sauk–Tippecanoe sequence boundary elsewhere beneath the Middle Ordovician succession and its equivalents, most notably North America and North China. Due to its global extent, this paleokarst unconformity has been viewed as a product of second‐ or third‐order eustatic sealevel drop during the early Middle Ordovician. Although a paleokarst breccia zone is recognized beneath the Middle Ordovician succession in South Korea, the Sauk–Tippecanoe sequence boundary appears to be a conformable transgressive surface on the top of the paleokarst breccia zone in the upper Maggol Limestone. The paleokarst breccia zone beneath the conformable transgressive surface is represented by a thinning‐upward stack of exposure‐capped tidal flat‐dominated cycles that are closely associated with multiple occurrences of paleokarst‐related solution–collapse breccias. This paleokarst breccia zone was a likely consequence of repeated fourth‐ and fifth‐order sealevel fluctuations. It suggests that second‐ and third‐order eustatic sealevel drop may have been significantly tempered by substantial tectonic subsidence near the end of the Maggol deposition. The tectonic subsidence in the basin is also evidenced by the occurrence of coeval off‐platform lowstand siliciclastic quartzite lenses as well as debris flow carbonate breccias (i.e. the Yemi Breccia). With the continued tectonic subsidence, subsequent rise in the eustatic cycle caused drowning and deep flooding of carbonate platform, forming a transgressive surface on the top of the paleokarst breccia zone. This tectonic implication contrasts notably with the slowly subsiding carbonate platform model for the basin as has been previously interpreted. Thus, it is proposed that the Taebacksan Basin in the northeastern part of the Ogcheon Belt evolved from a slowly subsiding carbonate platform to a rapidly subsiding intracontinental rift basin during the early Middle Ordovician. The proposed tectonic model in the basin gives much better insight to unravel the stratigraphic response to tectonic evolution of the Ogcheon Belt, which remains an enigmatic feature in formulating a tectonic framework of the Korean peninsula. The present study also provides a good example that the falling part of the eustatic sealevel cycle may not produce a significant event in a rapidly subsiding basin where the rate of eustatic fall always remained lower than the rate of subsidence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号