首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   12篇
  国内免费   24篇
地球物理   5篇
地质学   120篇
海洋学   3篇
综合类   15篇
自然地理   4篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2019年   3篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   4篇
  2014年   3篇
  2013年   2篇
  2012年   4篇
  2011年   2篇
  2010年   1篇
  2009年   6篇
  2008年   11篇
  2007年   5篇
  2006年   8篇
  2005年   2篇
  2004年   33篇
  2003年   5篇
  2002年   12篇
  2001年   5篇
  2000年   2篇
  1999年   4篇
  1998年   7篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1992年   5篇
  1988年   2篇
排序方式: 共有147条查询结果,搜索用时 656 毫秒
71.
J. Stiefenhofer  D.J. Farrow   《Lithos》2004,76(1-4):139-160
The Mwadui pipe represents the largest diamondiferous kimberlite ever mined and is an almost perfectly preserved example of a kimberlitic crater in-fill, albeit without the tuff ring.

The geology of Mwadui can be subdivided into five geological units, viz. the primary pyroclastic kimberlite (PK), re-sedimented volcaniclastic kimberlite deposits (RVK), granite breccias (subdivided into two units), the turbidite deposits, and the yellow shales listed in approximate order of formation. The PK can be further subdivided into two units—lithic-rich ash and lapilli tuffs which dominate the succession, and lithic-poor juvenile-rich ash and lapilli tuffs. The lower crater is well bedded down to at least 684 m from present surface (extent of current drill data). The bedding is defined by the presence of juvenile-rich lapilli tuffs vs. lithic-rich lapilli tuffs, and the systematic variation in granite content and clast size within much of the lithic-rich lapilli tuffs. Four distinct types of bedding have been identified in the pyroclastic deposits. Diffuse zones characterised by increased granite abundance and size, and upward-fining units, represent the dominant types throughout the deposit.

Lateral heterogeneity was observed, in addition to the vertical changes, suggesting that the eruption was quite heterogeneous, or that more than one vent may have been present. The continuous nature of the bedding in the pyroclastic material and the lack of ash-partings suggest deposition from a high concentration (ejecta), sustained eruption column at times, e.g. the massive, very diffusely stratified deposits. The paucity of tractional bed forms suggest near vertical particle trajectories, i.e. a clear air-fall component, but the poorly sorted, matrix-supported nature of the deposits suggest that pyroclastic flow and/or surge processes may also have been active during the eruption.

Available diamond sampling data were examined and correlated with the geology. Data derive from the old 120 (37 m), 200 (61 m), 300 (92 m) and 1200 ft (366 m) levels, pits sunk during historical mining operations, drill logs, as well as more recent bench mapping. Correlating macro-diamond sample data and geology shows a clear relationship between diamond grade and lithology. Localised enrichment and dilution of the primary diamond grade has taken place in the upper reworked volcaniclastic deposits due to post-eruptive sedimentary in-fill processes. Clear distinction can be drawn between upper (re-sedimented) and lower (pyroclastic) crater deposits at Mwadui, both from a geological and diamond grade perspective.

Finally, an emplacement model for the Mwadui kimberlite is proposed. Geological evidence suggests that little or no sedimentary cover existed at the time of emplacement. The nature of the bedding within the pyroclastic deposits and the continuity of the bedding in the vertical dimension suggest that the eruption was continuous, but that the eruption column may have been heterogeneous, both petrologically as well as geometrically. Volcanic activity appears to have ceased thereafter and the crater was gradually filled with granite debris from the unstable crater walls and re-sedimented volcaniclastic material derived from the tuff ring.

The Mwadui kimberlite exhibits marked similarities compared to the Orapa kimberlite in Botswana.  相似文献   

72.
George J. Simandl   《Lithos》2004,77(1-4):749-764
The tectonic setting of British Columbia (BC) differs from classic diamond-bearing intracratonic regions such as the Northwest Territories and South Africa. Nevertheless, several diamond occurrences have been reported in BC. It is also known that parts of the province are underlain by Proterozoic and possibly Archean basement. Because the continents of today are composites of fragments of ancient continents, it is possible that some of the regions underlain by old crystalline basement in eastern British Columbia were associated with a deep crustal keel. The keel may have predated the break-up of the early Neoproterozoic supercontinent called Rodinia and was preserved possibly until the Triassic. Some of these old continental fragments may have been displaced relative to their position of origin and dissociated from their keel, or the keel may have since been destroyed. Such fragments represent favourable exploration grounds in terms of the “Diamondiferous Mantle Root” model (DMR model) if they were intersected by kimberlites or lamproites prior to displacement or destruction of their underlying deep keel. Therefore, extrapolation of fragments of the diamond-bearing Precambrian basement from the Northwest Territories or Alberta to BC provides a sufficient reason for initiating reconnaissance indicator mineral surveys. The “Eclogite Subduction Zone” model (ES model) predicts formation of diamonds at lower pressure (i.e., depth) than required by the DMR model in convergent tectonic settings. Although not proven, this model is supported by thermal modeling of cold subduction zones and recent discoveries of diamonds in areas characterized by convergent tectonic settings. If the ES model is correct, then the parts of BC with a geological history similar to today's “cold” subduction zones, such as Honshu (Japan), or to continental collision zones, such as Kokchetav massif (Kazakhstan) and the Dabie–Sulu Terrane (east central China), may be diamondiferous. The terranes where geological evidences suggest an ultrahigh pressure (UHP) metamorphic event followed by rapid tectonic exhumation (which could have prevented complete resorption of diamonds on their journey to the surface) are worth investigating. If UHP rocks were intercepted at depth by syn- or post-subduction diamond elevators, such as kimberlites, lamproites, lamprophyres, nephelinites or other alkali volcanic rocks of deep-seated origin, the diamond potential of the area would be even higher.  相似文献   
73.
Multiple inclusions of minerals in diamonds from the Snap Lake/King Lake kimberlites of the southeastern Slave craton in Canada have been analyzed for trace elements to elucidate the petrogenetic history of these inclusions, and of their host diamonds. As observed worldwide, the harzburgitic-garnet diamond inclusions (DIs) possess sinusoidal REE patterns that indicate an early depletion event, followed by metasomatism by LREE-enriched, HREE-depleted fluids. Furthermore, these fluids appear to contain appreciable concentrations of LILE and HFSE, based on the increasing abundances of these elements in the olivine inclusion that occurs at the outer portion of a diamond compared to that near the core. The compositions of these fluids are probably a mixture of hydrous-silicic melt, carbonatitic melt, and brine, similar to the compositions of micro-inclusions in diamonds reported by Navon et al. (2003). Comparison between the compositions of majoritic and normal harzburgitic garnets shows that the former are more depleted in terms of major/minor elements (higher Cr#) but significantly more enriched in the REE (up to 10×). This characteristic may indicate the higher susceptibility for metasomatic enrichment of previously more depleted garnets. Garnets of eclogitic paragenesis show strong LREE-depleted patterns, whereas the coexisting omphacite inclusion has relatively flat light- and middle-REE but depleted HREE. Whole-rock reconstruction from coexisting garnet and omphacite inclusions indicates that the protolith of these inclusions was probably the extrusive section of an oceanic crust, subducted beneath the Slave craton.  相似文献   
74.
We have performed dissections of two diamondiferous eclogites (UX-1 and U33/1) from the Udachnaya kimberlite, Yakutia in order to understand the nature of diamond formation and the relationship between the diamonds, their mineral inclusions, and host eclogite minerals. Diamonds were carefully recovered from each xenolith, based upon high-resolution X-ray tomography images and three-dimensional models. The nature and physical properties of minerals, in direct contact with diamonds, were investigated at the time of diamond extraction. Polished sections of the eclogites were made, containing the mould areas of the diamonds, to further investigate the chemical compositions of the host minerals and the phases that were in contact with diamonds. Major- and minor-element compositions of silicate and sulfide mineral inclusions in diamonds show variations among each other, and from those in the host eclogites. Oxygen isotope compositions of one garnet and five clinopyroxene inclusions in diamonds from another Udachnaya eclogite (U51) span the entire range recorded for eclogite xenoliths from Udachnaya. In addition, the reported compositions of almost all clinopyroxene inclusions in U51 diamonds exhibit positive Eu anomaly. This feature, together with the oxygen isotopic characteristics, is consistent with the well-established hypothesis of subduction origin for Udachnaya eclogite xenoliths. It is intuitive to expect that all eclogite xenoliths in a particular kimberlite should have common heritage, at least with respect to their included diamonds. However, the variation in the composition of multiple inclusions within diamonds, and among diamonds, from the same eclogite indicates the involvement of complex processes in diamond genesis, at least in the eclogite xenoliths from Yakutia that we have studied.  相似文献   
75.
李兆麟 《地学前缘》2000,7(1):271-285
热液金刚石压腔 (HDAC)是 2 0世纪末发展起来的一种高温高压及低温高压实验技术。它可在 - 180~ 12 0 0℃ ,10 0~ 10 0 0 0MPa水热体系进行实验 ,并具直观实验全过程的特点。文中首次运用HDAC在水体系中对哀牢山花岗岩进行了熔融实验 ,在显微镜下观察到花岗岩熔融过程 ,其初熔温度为 712 88~ 714 87℃ ,压力为 2 2 5MPa ,熔融温度为 759 54~76 0 0 0℃ ,压力为 30 0MPa。重点介绍了国外运用HDAC进行冰的高压相、水体系中伟晶岩矿物溶解、可燃有机岩、石油及岩石热解、高压下矿物包裹体均一温度测定及甲烷水合物合成实验研究新成果。甲烷水合物在永久冻土带及大陆坡、海底高原、海底沉积物等地质环境广泛分布 ,储量大 ,可成为 2 1世纪人类使用的新能源。目前世界主要国家的科学家除致力于该资源勘探外 ,还运用不同方法进行甲烷水合物的合成研究 ,以了解其形成条件及性质。开发和应用甲烷水合物具有重大意义 ,为促进我国此项工作开展 ,文中作了重点介绍。  相似文献   
76.
碎岩刀具工作面圆弧化机理及解决途径   总被引:2,自引:0,他引:2       下载免费PDF全文
通过分析孕镶金刚石刀头碎岩和磨损机理,找出引金刚石刀头工作端面弧化的原因,并提出了克服圆弧化现象的几种方法。  相似文献   
77.
Mineral inclusions of corundum are reported from diamonds from alluvial deposits of tributaries of the Rio Aripuanã, Juina, Brazil. We present the first recorded occurrence of sapphire as an inclusion in diamond and expand on the database of ruby and white corundum inclusions. Ruby inclusions are found to occur both as isolated and touching grains with aluminous pyroxene and associated with ferropericlase. Mineral chemistry and phase relations place the origin of such ruby-bearing diamonds within the lower mantle at 770 km. Mineral associations indaving other corundum inclusions were not observed; hence, their depth of origin is less certain.

Compositions of corundum samples were characterised by electron and ion microprobe. Given the scarcity of literature data, corundum samples from a variety of other geological settings were also analysed. Samples comprised corundums associated with granitic emplacement, metasomatism, amphibolite-facies and granulite-facies rocks, gem and industrial synthetic origins and carmine-coloured corundums recovered from kimberlite drill cores.

In addition to variable amounts of Cr, Fe, Ti, Mg and Si, measurable quantities of other transition elements and high field strength elements were also detected. Corundums from similar geological settings show very similar compositions and are easily distinguishable from other settings. Irrespective of locality, rubies from Norwegian, Tanzanian and Kenyan amphibolite-facies rocks are compositionally indistinguishable. Additionally, corundums from metasomatised zones associated with contact metamorphism from Arizona and Japan were very similar, particularly characterised by unusually high abundance of mobile Zr and Nb (tens of ppm). All Juina inclusions are particularly distinguishable from other corundums by high concentrations of Ni (18–171 ppm weight), typically at least an order of magnitude enriched over the same corundum varietal types from elsewhere. Furthermore, the sapphire inclusion exhibited much larger ratios of Ga and Ge to HFSE elements compared to otherwise similar samples, and ruby inclusions are distinguished by high Mg/Fe ratios (0.27–1.56 by weight). Compositional differences between inclusions in diamonds and corundums from other settings in addition to corundum's physical and chemical durability suggest that with the employment of rapid identification tools such as energy dispersive spectrometry (EDS) and laser-ICPMS, corundum has promise as an indicator of diamond prospectivity.  相似文献   

78.
Cathodoluminescence (CL) imaging of polished sections of a diamond from the Guaniamo region of Venezuela suggests a history of the diamond involving two periods of growth separated by a period of resorption and possibly brittle deformation. In situ electron probe analysis of multiple eclogitic garnet inclusions reveals a correlation between garnet composition and location in the stone. An early-formed garnet in the diamond core has higher Ca/(Ca+Mg) and lower Mg/(Mg+Fe) values than later garnets associated with the second period of diamond growth. This variation conforms to an extensive trend of variation in the suite of eclogitic garnets extracted from Venezuelan diamonds. The diamond is zoned in carbon isotope composition (in situ secondary ion mass spectrometry, SIMS, data). The core compositions (δ13C PDB), corresponding to the first stage of growth, average −17.7‰. The second period of growth is apparently in two sub-sets of CL zones with mean values of −13.0‰ and −7.9‰. Nitrogen contents of diamond are low (30–300 atomic ppm) and do not correlate with carbon isotope composition. Oxygen isotope ratios of the garnet inclusions are elevated substantially above those expected for “common mantle”; δ18O VSMOW of early garnet is approximately +10.5‰ and two late garnets average +8.8‰. The evolutionary trend of magnesium enrichment in garnet is unlikely to represent igneous fractionation. The stable isotope data are consistent with diamond formation in subducted meta-basic rocks that had interacted with sea water at low temperatures at or near the sea floor and contained a substantial biogenic carbon component. During or following subduction, diamonds continued to form in an evolving system that was progressively modified by interaction with mantle material.  相似文献   
79.
Integrated models of diamond formation and craton evolution   总被引:4,自引:0,他引:4  
Two decades of diamond research in southern Africa allow the age, average N content and carbon composition of diamonds, and the dominant paragenesis of their syngenetic silicate and sulfide inclusions to be integrated on a cratonwide scale with a model of craton formation. Individual eclogitic sulfide inclusions in diamonds from the Kimberley area kimberlites, Koffiefontein, Orapa and Jwaneng have Re–Os isotopic ages that range from circa 2.9 Ga to the mid-Proterozoic and display little correspondence with the prominent variations in the P-wave velocity (±1%) that the mantle lithosphere shows at depths within the diamond stability field (150–225 km). Silicate inclusions in diamonds and their host diamond compositions for the above kimberlites, Finsch, Jagersfontein, Roberts Victor, Premier, Venetia, and Letlhakane show a regional relationship to the seismic velocity of the lithosphere. Mantle lithosphere with slower P-wave velocity relative to the craton average correlates with a greater proportion of eclogitic vs. peridotitic silicate inclusions in diamond, a greater incidence of younger Sm–Nd ages of silicate inclusions, a greater proportion of diamonds with lighter C isotopic composition, and a lower percentage of low-N diamonds. The oldest formation ages of diamonds support a model whereby mantle that became part of the continental keel of cratonic nuclei first was created by middle Archean (3.2–3.3 Ga or older) mantle depletion events with high degrees of melting and early harzburgite formation. The predominance of eclogitic sulfide inclusions in the 2.9 Ga age population links late Archean (2.9 Ga) subduction–accretion events to craton stabilization. These events resulted in a widely distributed, late Archean generation of eclogitic diamonds in an amalgamated craton. Subsequent Proterozoic tectonic and magmatic events altered the composition of the continental lithosphere and added new lherzolitic and eclogitic diamonds to the already extensive Archean diamond suite. Similar age/paragenesis systematics are seen for the more limited data sets from the Slave and Siberian cratons.  相似文献   
80.
Z.V. Spetsius   《Lithos》2004,77(1-4):525-538
Highly aluminous xenoliths include kyanite-, corundum- and coesite-bearing eclogites, grospydites and alkremites. These xenoliths are present in different kimberlites of Yakutia but have most often been found in Udachnaya and other pipes of the central Daldyn–Alakitsky region. Kimberlites of this field also contain eclogite-like xenoliths with kyanite and corundum that originate in the lower crust or the lower crust–upper mantle transition zone. Petrographic study shows that two rock groups of different structure and chemistry can be distinguished among kyanite eclogites: fine- to medium-grained with mosaic structure and coarse-grained with cataclastic structure. Eclogites with mosaic structure are characterized by the occurrences of symplectite intergrowths of garnet with kyanite, clinopyroxene and coesite; only in this group do grospydites occur. In cataclastic eclogites, coarse-grained coesite occurs, corresponding in size to other rock-forming minerals. Highly aluminous xenoliths differ from bimineralic eclogites in their high content of Al2O3 and total alkali content. Coesite-bearing varieties are characterized by low MgO content and higher Na/K and Fe2+/Fe3+ ratios, as well as high contents of Na2O. Geochemical peculiarities of kyanite eclogites and other rocks are exhibited by a sloping chondrite-normalized distribution of rare earth elements (REE) in garnets and low Y/Zr ratio, in contrast to bimineralic rocks. Coesite is found in more than 20 kyanite eclogites and grospydites from Udachnaya. Grospydites with coesite from Zagadochnaya pipe are described. Three varieties of coesite in these rocks are distinguished: (a) subhedral grains with size of 1.0–3.0 mm; (b) inclusions in the rock-forming minerals; (c) sub-graphic intergrowths with garnet. The presence and preservation of coesite in eclogites indicate both high pressure of formation (more than 30 kbar) and set a number of constraints on the timing of xenolith cooling during entrainment and transport to the surface. Different ways of formation of the highly aluminous eclogites are discussed. Petrographic observations and geochemistry suggest that some highly aluminous rocks have formed as a result of crystallization of anorthosite rocks in abyssal conditions. δ18O-estimations and other petrologic evidence point out the possible origin of some of these xenoliths as the result of subduction of oceanic crust. Diamondiferous samples have been found in all varieties except alkremites. Usually these eclogites contain cubic or coated diamonds. However, two sample corundum-bearing eclogites with diamonds from the Udachnaya pipe contain octahedra that show evidence of resorption.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号