首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4665篇
  免费   1971篇
  国内免费   209篇
测绘学   19篇
地球物理   3650篇
地质学   2188篇
海洋学   285篇
天文学   329篇
综合类   5篇
自然地理   369篇
  2022年   6篇
  2021年   66篇
  2020年   75篇
  2019年   258篇
  2018年   461篇
  2017年   475篇
  2016年   512篇
  2015年   454篇
  2014年   465篇
  2013年   770篇
  2012年   451篇
  2011年   415篇
  2010年   343篇
  2009年   248篇
  2008年   322篇
  2007年   222篇
  2006年   224篇
  2005年   226篇
  2004年   187篇
  2003年   180篇
  2002年   147篇
  2001年   133篇
  2000年   139篇
  1999年   32篇
  1998年   3篇
  1997年   9篇
  1996年   2篇
  1995年   4篇
  1994年   5篇
  1993年   3篇
  1992年   1篇
  1991年   6篇
  1982年   1篇
排序方式: 共有6845条查询结果,搜索用时 62 毫秒
761.
Earthquake‐induced deck‐abutment contact alters the boundary conditions at the deck level and might activate a different mechanical system than the one assumed during the design of the bridge. Occasionally this discrepancy between the assumed and the actual seismic behavior has detrimental consequences, for example, pier damage, deck unseating, or even collapse. Recently, an insightful shake‐table testing of a scaled deck‐abutment bridge model 1 , showed unexpected in‐plane rotations even though the deck was straight. These contact‐induced rotations produced significant residual displacements and damage to the piers and the bents. The present paper utilizes that experimental data to examine the validity and the limitations of a proposed nonsmooth dynamic analysis framework. The results show that the proposed approach satisfactorily captures the planar rigid‐body dynamics of the deck which is characterized by deck‐abutment contact. The analysis brings forward the role of friction on the physical mechanism behind the rotation of the deck, and underlines the importance of considering the frictional contact forces during deck‐abutment interaction even for straight bridges, which typically are neglected. Finally, the paper investigates the sensitivity of the rotation with respect to macroscopic contact parameters (i.e., the coefficient of friction and the coefficient of restitution). Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
762.
Post‐tensioned technologies for concrete seismic resistant buildings were first developed in the 1990s during the PREcast Seismic Structural Systems program. Among different solutions, the hybrid system proved to be the most resilient solution providing a combination of re‐centering and energy dissipative contributions respectively by using post‐tensioned tendons and mild steel reinforcement. The system, while providing significant strength and energy dissipation, reduces structural element damage and limits post‐earthquake residual displacements. More recently, the technology was extended to laminated veneer lumber (LVL) structural members, and extensive experimental and numerical work was carried out and allowed the development of reliable analytical and numerical models as well as design guidelines. On the basis of the experimental and numerical outcomes, this paper presents the evaluation of the seismic performance factors for post‐tensioned rocking LVL walls using the FEMA P‐695 procedure. Several archetype buildings were designed considering different parameters such as the building and story height, the type of seismic resistant system, the magnitude of gravity loads and the seismic design category. Lumped plasticity models were developed for each index archetype to simulate the behavioral aspects and collapse mechanisms. Non‐linear quasi‐static analyses were carried out to evaluate the system over‐strength factor; moreover, non‐linear time history analyses were performed using the incremental dynamic analysis concept to assess the collapse of each building. From the results of quasi‐static and dynamic analyses the response modification factor, R, system over‐strength factor, Ω0, and deflection amplification factor, Cd, values of, respectively, 7, 3.5 and 7.5 are recommended. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
763.
A new type of bracing system composed of friction energy dissipation devices for energy dissipation, pre‐pressed combination disc springs for self‐centering and tube members as guiding elements is developed and experimentally studied in this paper. The mechanics of this system are explained, the equations governing its hysteretic responses are outlined and large‐scale validation tests of two braces with different types of disc springs are conducted under the condition of low cyclic reversed loading. The experimental results demonstrate that the proposed bracing system exhibits a stable and repeatable flag‐shaped hysteretic response with an excellent self‐centering capability and effective energy dissipation throughout the loading protocol. Furthermore, the maximum bearing force and stiffness are predicted well by the equations governing its mechanical behavior. Fatigue and destructive test results demonstrate that the proposed bracing system can maintain stable energy dissipation and self‐centering capabilities under large deformation cyclic loading even when the tube members exceed the elastic limit and that a larger bearing capacity is achieved by the system that has disc springs without a bearing surface. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
764.
The response of a rigid block supported on a horizontally moving foundation through a dry‐friction contact is investigated to near‐fault ground motions. Such motions can be thought of as consisting of a coherent component (‘pulse’) and an incoherent component, which can be described as a band‐limited ‘random noise’. The equation of motion of this strongly nonlinear system is reduced to a normalized form that reveals important parameters of the problem such as the critical acceleration ratio. The response of the sliding block to a set of uniformly processed near‐fault motions, covering a sufficiently wide range of magnitudes, is evaluated numerically for selected discrete values of the acceleration ratio. For each value of the critical acceleration ratio, the numerically computed residual slips are fitted with a Weibull (Gumbel type III) extreme value probability distribution. This allows the establishment of regression equations that describe accurately design sliding curves corresponding to various levels of non‐exceedance probability. The analysis reveals that the coherent component of motion contributes significantly to the response of the sliding block. Furthermore, the relevant acceleration in specifying the critical acceleration ratio is the (normalized) amplitude, αH_pulse, of the pulse and not the (normalized) amplitude of the incoherent component αH. Finally, the incoherent component is described quantitatively in terms of the root‐mean‐square acceleration aRMS, and an attempt is made to understand its influence on the response of the sliding block. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
765.
This paper revisits the phenomenon of dynamic soil‐structure interaction (SSI) with a probabilistic approach. For this purpose, a twofold objective is pursued. First, the effect of SSI on inelastic response of the structure is studied considering the prevailing uncertainties. Second, the consequence of practicing SSI provisions of the current seismic design codes on the structural performance is investigated in a probabilistic framework. The soil‐structure system is modeled by the sub‐structure method. The uncertainty in the properties of the soil and the structure is described by random variables that are input to this model. Monte Carlo sampling analysis is employed to compute the probability distribution of the ductility demand of the structure, which is selected as the metrics for the structural performance. In each sample, a randomly generated soil‐structure system is subjected to a randomly selected and scaled ground motion. To comprehensively model the uncertainty in the ground motion, a suite of 3269 records is employed. An extensive parametric study is conducted to cover a wide range of soil‐structure systems. The results reveal the probability that SSI increases the ductility demand of structures designed based on the conventional fixed‐based assumption but built on flexible soil in reality. The results also show it is highly probable that practicing SSI provisions of modern seismic codes increase the ductility demand of the structure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
766.
Decision models for the verification of seismic collapse safety of buildings are introduced. The derivations are based on the concept of the acceptable (target) annual probability of collapse, whereas the decision making involves comparisons between seismic demand and capacity, which is familiar to engineering practitioners. Seismic demand, which corresponds to the design seismic action associated with a selected return period, can be expressed either in terms of an intensity measure (IM) or an engineering demand parameter (EDP). Seismic capacity, on the other hand, is defined by dividing the near‐collapse limit‐state IM or EDP by an appropriate risk‐targeted safety factor (γ im or γ edp ), which is the only safety factor used in the proposed decision model. Consequently, the seismic performance assessment of a building should be based on the best possible estimate. For a case study, it is shown that if the target collapse risk is set to 10?4 (0.5% over a period of 50 years), and if the seismic demand corresponds to a return period of 475 years (10% over a period of 50 years), then it can be demonstrated that γ im is approximately equal to 2.5 for very stiff buildings, whereas for buildings with long periods the value of γ im can increase up to a value of approximately 5. The model using γ edp is equal to that using γ im only if it can be assumed that displacements, with consideration of nonlinear behavior, are equal to displacements from linear elastic analysis.  相似文献   
767.
768.
The steel plate shear wall (SPSW) system is a robust option for earthquake resistance due to the strength, stiffness, ductility and energy dissipation that it provides. Although thin infill plates are efficient for resisting lateral loads, boundary frames that are proportioned based on capacity design requirements add significant structural weight that appears to be one of the factors limiting the use of the system in practice. An alternate configuration, the SPSW with coupling (SPSW‐WC), was explored recently as an option for increasing architectural flexibility while also improving overall system economy and seismic performance. The SPSW‐WC, which extensively employs flexural boundary frame contribution, has shown promise in analytical, numerical and experimental studies, but recent research on uncoupled SPSWs suggests that boundary frame contribution should not be considered for carrying seismic design shear. As a result, in the present study, boundary frame contribution in SPSWs was explored with detailed three‐dimensional finite element models, which were validated against large‐scale SPSW‐WC tests. Six‐story systems were considered, and the study matrix included single and double uncoupled SPSWs along with coupled SPSWs that had various degrees of coupling. Variations in design methodology were also explored. The modeling framework was employed to conduct static monotonic and cyclic pushover analyses and dynamic response history analysis. These analyses demonstrate the beneficial effect of coupling in SPSWs and illustrate the need to consider boundary frame contribution in design of coupled SPSWs. In addition, sharing design shear between the infill plate and the boundary frame is more generally shown to not be detrimental if this sharing is done in the design stage based on elastic analysis and the resulting boundary frame provides adequate secondary strength and stiffness following infill plate yielding. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
769.
In this paper, the effects of a mass damper on the rocking motion of a non‐symmetric rigid block‐like structure, subject to different seismic excitation, are investigated. The damper is modelled as a single degree of freedom oscillating mass, running at the top of the block and connected to it by a linear visco‐elastic device. The equations of rocking motion, the uplift and the impact conditions are derived. A nondimensionalisation of the governing equations is performed with the aim to obtain an extensive parametric analysis. The results are achieved by numerical integration of these equations. The slenderness and the base of the rigid block, and the eccentricity of the centre of mass are taken as variable parameters in the analyses. The main objective of the study is to check the performance of the damper versus the spectral characteristics of the seismic input. Three earthquake registrations with different frequency contents are used in the analyses. The results show that the presence of the mass damper leads to different levels of improvement of the response of the system, depending on the spectral characteristics of the seismic input. Curves providing the overturning slenderness of blocks of specific sizes versus the characteristics of the TMD are obtained. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
770.
Large wood along rivers influences entrainment, transport, and storage of mineral sediment and particulate organic matter. We review how wood alters sediment dynamics and explore patterns among volumes of in‐stream wood, sediment storage, and residual pools for dispersed pieces of wood, logjams, and beaver dams. We hypothesized that: volume of sediment per unit area of channel stored in association with wood is inversely proportional to drainage area; the form of sediment storage changes downstream; sediment storage correlates with wood load; the residual volume of pools created in association with wood correlates inversely with drainage area; and volume of sediment stored behind beaver dams correlates with pond area. Lack of data from larger drainage areas limits tests of these hypotheses, but the analyses suggest that sediment volume correlates positively with drainage area and wood volume. The form of sediment storage in relation to wood appears to change downstream, with wedges of sediment upstream from jammed steps most prevalent in small, steep channels and more dispersed sediment storage in lower gradient channels. Pool volume correlates positively with wood volume and negatively with channel gradient. Sediment volume correlates well with beaver pond area. More abundant in‐stream wood and beaver populations present historically equated to greater sediment storage within river corridors and greater residual pool volume. One implication of these changes is that protecting and re‐introducing wood and beavers can be used to restore rivers. This review of the existing literature on wood and sediment dynamics highlights the lack of studies on larger rivers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号