首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130篇
  免费   28篇
  国内免费   9篇
测绘学   22篇
大气科学   11篇
地球物理   52篇
地质学   50篇
海洋学   6篇
综合类   10篇
自然地理   16篇
  2022年   2篇
  2020年   14篇
  2019年   8篇
  2018年   9篇
  2017年   9篇
  2016年   3篇
  2015年   6篇
  2014年   12篇
  2013年   5篇
  2012年   7篇
  2011年   9篇
  2010年   9篇
  2009年   10篇
  2008年   3篇
  2007年   7篇
  2006年   4篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
  2002年   6篇
  2001年   4篇
  2000年   3篇
  1999年   5篇
  1998年   1篇
  1997年   2篇
  1996年   6篇
  1995年   1篇
  1994年   3篇
  1993年   4篇
  1992年   2篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
排序方式: 共有167条查询结果,搜索用时 171 毫秒
141.
A constrained 3D density model of the upper crust along a part of the Deccan Syneclise is carried out based on the complete Bouguer anomaly data. Spectral analysis of the complete Bouguer gravity anomaly map of the study region suggests two major sources: short wavelength anomalies (<100 km) caused primarily due to the density inhomogeneities at shallow crustal level and long wavelength anomalies (>100 km) produced due to the sources deeper than the upper crust. A residual map of the short wavelength anomalies is prepared from the complete Bouguer anomaly using Butterworth high‐pass filter (100 km cut‐off wavelength). Utilizing the constraints from deep resistivity sounding, magnetotellurics and deep seismic sounding studies, 2.5D density models have been generated along 39 profiles of this region. The mismatch between the calculated response of the a priori 2.5D model with the residual (short wavelength) gravity anomalies is minimized by introducing high‐density intrusive bodies (≥2.81 g/cm3) in the basement. With these 2.5D density models, the initial geometry of our 3D density model, which includes alluvium, Deccan trap, Mesozoic sediment and high‐density intrusive bodies in the basement up to a depth of 7 km (upper crust), is generated. In the final 3D model, Deccan trap extends from 200 m to nearly 1700 m below the 90–150 m thick Quaternary sediment. Further down, the sub‐trappean Mesozoic sediment is present at a depth range of 600–3000 m followed by the basement. The derived 3D density model also indicates six intrusive bodies of density 2.83 g/cm3 in the basement at an average depth of about 4–7 km that best fits the residual gravity anomaly of the study area.  相似文献   
142.
In this paper, we introduce a new method of geophysical data interpretation based on simultaneous analysis of images and sounds. The final objective is to expand the interpretation workflow through multimodal (visual–audio) perception of the same information. We show how seismic data can be effectively converted into standard formats commonly used in digital music. This conversion of geophysical data into the musical domain can be done by applying appropriate time–frequency transforms. Using real data, we demonstrate that the Stockwell transform provides a very accurate and reliable conversion. Once converted into musical files, geophysical datasets can be played and interpreted by using modern computer music tools, such as sequencers. This approach is complementary and not substitutive of interpretation methods based on imaging. It can be applied not only to seismic data but also to well logs and any type of geophysical time/depth series. To show the practical implications of our integrated visual–audio method of interpretation, we discuss an application to a real seismic dataset in correspondence of an important hydrocarbon discovery.  相似文献   
143.
A new method for the calculation of the depth, location, and dip of thin dykes from pole‐reduced magnetic data is introduced. The depth can be obtained by measuring the distance between chosen values of a tilt angle that is based upon the ratio of the magnetic field and its Hilbert transform over the dyke. Alternatively, it can be obtained from the horizontal derivative of the ratio of the Hilbert transform of the field to the field itself, over the dyke. The latter method also allows the dip of the dyke to be estimated from the gradient of the depth estimates.  相似文献   
144.
Seismic facies analysis is a well‐established technique in the workflow followed by seismic interpreters. Typically, huge volumes of seismic data are scanned to derive maps of interesting features and find particular patterns, correlating them with the subsurface lithology and the lateral changes in the reservoir. In this paper, we show how seismic facies analysis can be accomplished in an effective and complementary way to the usual one. Our idea is to translate the seismic data in the musical domain through a process called sonification, mainly based on a very accurate time–frequency analysis of the original seismic signals. From these sonified seismic data, we extract several original musical attributes for seismic facies analysis, and we show that they can capture and explain underlying stratigraphic and structural features. Moreover, we introduce a complete workflow for seismic facies analysis starting exclusively from musical attributes, based on state‐of‐the‐art machine learning computational techniques applied to the classification of the aforementioned musical attributes. We apply this workflow to two case studies: a sub‐salt two‐dimensional seismic section and a three‐dimensional seismic cube. Seismic facies analysis through musical attributes proves to be very useful in enhancing the interpretation of complicated structural features and in anticipating the presence of hydrocarbon‐bearing layers.  相似文献   
145.
The idea of curvature analysis has been widely used in subsurface structure interpretation from three-dimensional seismic data (e.g., fault/fracture detection and geomorphology delineation) by measuring the lateral changes in the geometry of seismic events. However, such geometric curvature utilizes only the kinematic information (two-way traveltime) of the available seismic signals. While analysing the dynamic information (waveform), the traditional approaches (e.g., complex trace analysis) are often trace-wise and thereby fail to take into account the seismic reflector continuity and deviate from the true direction of geologic deposition, especially for steeply dipping formations. This study proposes extending the three-dimensional curvature analysis to the waveforms in a seismic profile, here denoted as the waveform curvature, and investigates the associated implications for assisting seismic interpretation. Applications to the F3 seismic dataset over the Netherlands North Sea demonstrate the added values of the proposed waveform curvature analysis in four aspects. First, the capability of the curvature operator in differentiating convex and concave bending allows automatic decomposition of a seismic image by the reflector types (peaks, troughs and zero crossings), which can greatly facilitate computer-aided horizon interpretation and modelling from three-dimensional seismic data. Second, the signed minimum curvature offers a new analytical approach for estimating the fundamental and important reflector dip attribute by searching the orientation associated with least waveform variation. Third, the signed maximum curvature makes it possible to analyse the seismic signals along the normal direction of the reflection events. Finally, the curvature analysis promotes the frequency bands of the seismic signals and thereby enhances the apparent resolution on identifying and interpreting subtle seismic features.  相似文献   
146.
第二次农村土地调查技术与实践   总被引:1,自引:0,他引:1  
第二次土地调查工作,包括农村土地调查和城镇土地调查两部分,是一项统一由政府组织实施的重大任务。结合生产实践阐述了基于遥感影像建立影像解译标志,并在GIS软件上解译影像信息,采用内外业相结合方法,全面掌握城镇、村庄以及独立工矿区内部工业用地、基础设施用地、住宅用地以及农村宅基地等行业用地、农用地、未利用地的数量和分布,并建立土地利用现状数据库的过程。  相似文献   
147.
Severe limitations of the standard Euler deconvolution to outline source shapes have been pointed out. However, Euler deconvolution has been widely employed on field data to outline interfaces, as faults and thrust zones. We investigate the limitations of the 3D Euler deconvolution–derived estimates of source dip and volume with the use of reduced-to-the-pole synthetic and field anomalies. The synthetic anomalies are generated by two types of source bodies: (1) uniformly magnetized prisms, presenting either smooth or rough interfaces, and (2) bodies presenting smooth delimiting interfaces but strong internal variation of magnetization intensity. The dip of the first type of body might be estimated from the Euler deconvolution solution cluster if the ratio between the depth to the top and vertical extent is relatively high (>1/4). For the second type of body, besides dip, the source volume can be approximately delimited from the solution cluster envelope, regardless of the referred ratio. We apply Euler deconvolution to two field anomalies which are caused by a curved-shape thrust zone and by a banded iron formation. These anomalies are chosen because they share characteristics with the two types of synthetic bodies. For the thrust zone, the obtained Euler deconvolution solutions show spatial distribution allowing to estimate a source dip that is consistent with the surface geology data, even if the above-mentioned ratio is much less than 1/4. Thus, there are other factors, such as a heterogeneous magnetization, which might be controlling the vertical spreading of the Euler deconvolution solutions in the thrust zone. On the other hand, for the iron-ore formation, the solution cluster spreads out occupying a volume, in accordance with the results obtained with the synthetic sources having internal variation of magnetization intensity. As conclusion, although Euler deconvolution–derived solutions cannot offer accurate estimates of source shapes, they might provide a sufficient degree of reliability in the initial estimates of the source dip and volume, which may be useful in a later phase of more accurate modelling.  相似文献   
148.
In exploration geophysics, the efforts to extract subsurface information from wave characteristics exceedingly depend on the construction of suitable rock physics model. Analysis of different rock physics models reveals that the strength and magnitude of attenuation and dispersion of propagating wave exceedingly depend on wave-induced fluid flow at multiple scales. In current work, a comprehensive analysis of wave attenuation and velocity dispersion is carried out at broad frequency range. Our methodology is based on Biot's poroelastic relations, by which variations in wave characteristics associated with wave-induced fluid flow due to the coexistence of three fluid phases in the pore volume is estimated. In contrast to the results of previous research, our results indicate the occurrence of two-time pore pressure relaxation phenomenon at the interface between fluids of disparate nature, that is, different bulk modulus, viscosity and density. Also, the obtained results are compatible with numerical results for the same 1D model which are accounted using Biot's poroelastic and quasi-static equation in frequency domain. Moreover, the effects of change in saturation of three-phase fluids were also computed which is the key task for geophysicist. The outcomes of our research reveal that pore pressure relaxation phenomenon significantly depends on the saturation of distinct fluids and the order of saturating fluids. It is also concluded that the change in the saturation of three-phase fluid significantly influences the characteristics of the seismic wave. The analysis of obtained results indicates that our proposed approach is a useful tool for quantification, identification and discrimination of different fluid phases. Moreover, our proposed approach improves the accuracy to predict dispersive behaviour of propagating wave at sub-seismic and seismic frequencies.  相似文献   
149.
Seismic detection of faults, dykes, potholes and iron-rich ultramafic pegmatitic bodies is of great importance to the platinum mining industry, as these structures affect safety and efficiency. The application of conventional seismic attributes (such as instantaneous amplitude, phase and frequency) in the hard-rock environment is more challenging than in soft-rock settings because the geology is often complex, reflections disrupted and the seismic energy strongly scattered. We have developed new seismic attributes that sharpen seismic reflections, enabling additional structural information to be extracted from hard-rock seismic data. The symmetry attribute is based on the invariance of an object with respect to transformations such as rotation and reflection; it is independent of the trace reflection amplitude, and hence a better indicator of the lateral continuity of thin and weak reflections. The reflection-continuity detector attribute is based on the Hilbert transform; it enhances the visibility of the peaks and troughs of the seismic traces, and hence the continuity of weak reflections. We demonstrate the effectiveness of these new seismic attributes by applying them to a legacy 3D seismic data set from the Bushveld Complex in South Africa. These seismic attributes show good detection of deep-seated thin (∼1.5 m thick) platinum ore bodies and their associated complex geological structures (faults, dykes, potholes and iron-rich ultramafic pegmatites). They provide a fast, cost-effective and efficient interpretation tool that, when coupled with horizon-based seismic attributes, can reveal structures not seen in conventional interpretations.  相似文献   
150.
通过钻孔与地面物性测定,查明含矿岩体和硅质板岩都具有较高的极化率和相对较低的电阻率,是引起电性异常的主要因素。利用重磁异常推断岩体的空间分布形态为一向下延伸长度大于走向长度的岩柱。由重磁异常圈定的岩体范围内电性异常为矿体引起,其外为岩性异常,这是区分矿与非矿异常排除干扰的最佳标志。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号