首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   865篇
  免费   152篇
  国内免费   372篇
测绘学   16篇
大气科学   357篇
地球物理   145篇
地质学   378篇
海洋学   374篇
天文学   5篇
综合类   46篇
自然地理   68篇
  2024年   5篇
  2023年   19篇
  2022年   32篇
  2021年   56篇
  2020年   52篇
  2019年   46篇
  2018年   57篇
  2017年   50篇
  2016年   47篇
  2015年   36篇
  2014年   58篇
  2013年   100篇
  2012年   61篇
  2011年   48篇
  2010年   54篇
  2009年   53篇
  2008年   77篇
  2007年   86篇
  2006年   76篇
  2005年   62篇
  2004年   50篇
  2003年   44篇
  2002年   31篇
  2001年   24篇
  2000年   32篇
  1999年   11篇
  1998年   14篇
  1997年   19篇
  1996年   7篇
  1995年   7篇
  1994年   17篇
  1993年   14篇
  1992年   8篇
  1991年   7篇
  1990年   8篇
  1989年   3篇
  1988年   5篇
  1987年   3篇
  1986年   2篇
  1984年   2篇
  1983年   1篇
  1981年   2篇
  1980年   1篇
  1954年   2篇
排序方式: 共有1389条查询结果,搜索用时 31 毫秒
91.
The Bayesian extreme-value distribution of earthquake occurrences has been used to estimate the seismic hazard in 12 seismogenic zones of the North-East Indian peninsula. The Bayesian approach has been used very efficiently to combine the prior information on seismicity obtained from geological data with historical observations in many seismogenic zones of the world. The basic parameters to obtain the prior estimate of seismicity are the seismic moment, slip rate, earthquake recurrence rate and magnitude. These estimates are then updated in terms of Bayes’ theorem and historical evaluations of seismicity associated with each zone. From the Bayesian analysis of extreme earthquake occurrences for North-East Indian peninsula, it is found that for T = 5 years, the probability of occurrences of magnitude (M w = 5.0–5.5) is greater than 0.9 for all zones. For M w = 6.0, four zones namely Z1 (Central Himalayas), Z5 (Indo-Burma border), Z7 (Burmese arc) and Z8 (Burma region) exhibit high probabilities. Lower probability is shown by some zones namely␣Z4, Z12, and rest of the zones Z2, Z3, Z6, Z9, Z10 and Z11 show moderate probabilities.  相似文献   
92.
Upper-mantle structure under the Baltic Shield is studied using non-linear high resolution teleseismic P -phase tomography. Observed relative arrival-time residuals from 52 teleseismic earthquakes recorded by the Swedish National Seismological Network (SNSN) are inverted to delineate the structure of the upper mantle. The network consists of 47 (currently working) three-component broad-band stations located in an area about 450 km wide and 1450 km long. In order to reduce complications due to possible significant three-dimensionality of Earth structure, events chosen for this study lay close to in-line with the long-axis of the array  (±30°)  . Results indicate P -wave velocity perturbations of ±3 per cent down to at least 470 km below the network. The size of the array allows inversion for structures even at greater depths, and lateral variations of velocity at depths of up to 680 km appear to be resolved. Below the central part of the array (60°–64° N), where ray coverage is best, the data reveals a large region of relatively low velocity at depths of over about 300 km. At depths less than about 250–300 km, the models include a number of features, including an apparent slab-like structure dipping gently towards the north.  相似文献   
93.
Thirty-seven new K–Ar ages from West Maui volcano, Hawai‘i, are used to define the waning stages of shield growth and a brief episode of postshield volcanism. All but two samples from shield-stage strata have reversed polarity magnetization, so conceivably the exposed shield is not much older than the Olduvai Normal-Polarity subchron, or about 1.8 Ma. The oldest ages obtained are in the range 1.9–2.1 Ma but have large analytical error. Shield volcanism ended about 1.35 Ma, and postshield volcanism followed soon thereafter, persisting until about 1.2 Ma. Exposed shield-stage strata were emplaced at a rate of about 0.001 km3 per year, a rate smaller than historic Hawaiian magmatic rates by a factor of 100. Stratigraphic accumulation rates are similar to those measured previously at Wai‘anae volcano (O‘ahu) or the upper part of the Mauna Kea shield sequence (Hilo drill core, Hawai‘i). These rates diminish sharply during the final 0.3–0.5 m.y. of the shield stage. Hawaiian shield volcanoes begin waning well before their last 0.5 m.y. of life, then end quickly, geologically speaking, if West Maui is representative.  相似文献   
94.
The present study is an attempt to examine the variability of convective activity over the north Indian Ocean (Bay of Bengal and Arabian Sea) on interannual and longer time scale and its association with the rainfall activity over the four different homogeneous regions of India (viz., northeast India, northwest India, central India and south peninsular India) during the monsoon season from June to September (JJAS) for the 26 year period (1979 to 2004). The monthly mean Outgoing Long-wave Radiation (OLR) data obtained from National Oceanic and Atmospheric Administration (NOAA) polar orbiting spacecraft are used in this study and the 26-year period has been divided into two periods of 13 years each with period-i from 1979 to 1991 and period -ii from 1992 to 2004. It is ascertained that the convective activity increases over the Arabian Sea and the Bay of Bengal in the recent period (period -ii; 1992 to 2004) compared to that of the former period (period -i; 1979 to 1991) during JJAS and is associated with a significantly increasing trend (at 95% level) of convective activity over the north Bay of Bengal (NBAY). On a monthly scale, July and August also show increase in convective activity over the Arabian Sea and the Bay of Bengal during the recent period and this is associated with slight changes in the monsoon activity cycle over India. The increase in convective activity particularly over the Arabian Sea during the recent period of June is basically associated with about three days early onset of the monsoon over Delhi and relatively faster progress of the monsoon northward from the southern tip of India. Over the homogeneous regions of India the correlation coefficient (CC) of OLR anomalies over the south Arabian Sea (SARA) is highly significant with the rainfall over central India, south peninsular India and northwest India, and for the north Arabian Sea (NARA), it is significant with northwest India rainfall and south peninsular rainfall. Similarly, the OLR anomalies over the south Bay of Bengal (SBAY) have significant CC with northwest India and south peninsular rainfall, whereas the most active convective region of the NBAY is not significantly correlated with rainfall over India. It is also found that the region over northeastern parts of India and its surroundings has a negative correlation with the OLR anomalies over the NARA and is associated with an anomalous sinking (rising) motion over the northeastern parts of India during the years of increase (decrease) of convective activity over the NARA.  相似文献   
95.
印度洋偶极子对大气环流和气候的影响   总被引:28,自引:6,他引:28  
赤道印度洋SST的分析研究证实了偶极子型振荡的存在,它在9-11月较强而在1-4月较弱。若以海温西高东低为偶极子振荡正位相,以海温东高西低为负位相,则一般是正位相时振荡要强于负位相。印度洋偶极子也存在年际(主要周期为4-5年)和年代际(主要周期为25-30年)变化。分析研究表明,印度洋偶极子对亚洲季风活动有明显影响,因为亚洲地区对流层低层的风场,南亚高压和西太平洋副高强度都与印度洋偶极子有关。另外,印度洋偶极子还对北美和南印度洋(包括澳大利亚和南美)地区的大气环流和气流有影响。  相似文献   
96.
97.
The relationship between the monsoon rainfall throughout all India, northwest India and peninsular India as well as the onset dates of the monsoon and two indices of southern oscillation (SOI), namely Isla de Pascua minus Darwin (I-D) and Tahiti minus Darwin (T-D) pressure anomaly have been studied for different periods. The study indicates that the monsoon rainfall shows a strong and significant direct relationship with SOI for the concurrent, succeeding autumn and succeeding winter seasons. The magnitude of the direct correlation coefficient for the SOI using (I-D) is enhanced over all India and peninsular India if the above seasons happen to be associated with an easterly phase of the QBO (Quasi-Biennial Oscillation) at 50 mb. The result indicates that the strength of the monsoon plays an important role in the following southern oscillation events in the Pacific Ocean. The premonsoon tendency of the SOI anomaly spring minus winter SOI shows a significant positive correlation with monsoon rainfall over all India, northwest India and peninsular India. The absolute value of the positive correlation coefficient becomes highly enhanced over all India, northwest India as well as peninsular India if the 6-month period from December to March is associated with the westerly phase of the QBO. Hence, the premonsoon SOI tendency parameter can be a useful predictor of Indian monsoon rainfall especially if it happens to be associated with the westerly QBO. Significant negative association is also found between the anomaly of monsoon onset dates and SOI of the previous spring season, the absolute value being higher for SOI (T-D) than for SOI (I-D). The negative correlation coefficient becomes enhanced if the previous springs are associated with a westerly phase of the QBO. It shows that the previous spring SOI has some predictive value for the onset date of Indian monsoon, a positive SOI followed by an early onset of monsoon, andvice versa, especially if it is associated with a westerly phase of the QBO.  相似文献   
98.
ABSTRACT

India has been the subject of many recent groundwater studies due to the rapid depletion of groundwater in large parts of the country. However, few if any of these studies have examined groundwater storage conditions in all of India’s river basins individually. Herein we assess groundwater storage changes in all 22 of India’s major river basins using in situ data from 3420 observation locations for the period 2003–2014. One-month and 12-month standardized precipitation index measures (SPI-1 and SPI-12) indicate fluctuations in the long-term pattern. The Ganges and Brahmaputra basins experienced long-term decreasing trends in precipitation in both 1961–2014 and the study period, 2003–2014. Indeterminate or increasing precipitation trends occurred in other basins. Satellite-based and in situ groundwater storage time series exhibited similar patterns, with increases in most of the basins. However, diminishing groundwater storage (at rates of >0.4 km3/year) was revealed in the Ganges-Brahmaputra River Basin based on in situ observations, which is particularly important due to its agricultural productivity.  相似文献   
99.
本文利用ERA5 1979-2019年逐月大气再分析资料计算南北印度洋热带气旋生成指数,并和IBTrACS观测数据进行比较,探讨用热带气旋生成指数研究南北印度洋热带气旋变化特征的适用性.研究发现热带气旋生成指数能较好地刻画南北印度洋热带气旋的空间分布特征、北印度洋热带气旋个数月变化的双峰结构,以及南印度洋比北印度洋热带气旋发生概率高等特征.最新的IBTrACS v4.0观测资料显示,40年来北印度洋热带气旋每年总生成个数平均每10年增加1.3个,频数的增加主要来源于热带低压和热带风暴,而南印度洋热带气旋每年总生成个数每10年减少2.8个.热带气旋生成指数能很好地描述北印度洋热带气旋生成个数的上升趋势,但对南印度洋热带气旋生成个数趋势的刻画与观测不一致,可能原因需要进一步深入研究.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号