首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   865篇
  免费   152篇
  国内免费   372篇
测绘学   16篇
大气科学   357篇
地球物理   145篇
地质学   378篇
海洋学   374篇
天文学   5篇
综合类   46篇
自然地理   68篇
  2024年   5篇
  2023年   19篇
  2022年   32篇
  2021年   56篇
  2020年   52篇
  2019年   46篇
  2018年   57篇
  2017年   50篇
  2016年   47篇
  2015年   36篇
  2014年   58篇
  2013年   100篇
  2012年   61篇
  2011年   48篇
  2010年   54篇
  2009年   53篇
  2008年   77篇
  2007年   86篇
  2006年   76篇
  2005年   62篇
  2004年   50篇
  2003年   44篇
  2002年   31篇
  2001年   24篇
  2000年   32篇
  1999年   11篇
  1998年   14篇
  1997年   19篇
  1996年   7篇
  1995年   7篇
  1994年   17篇
  1993年   14篇
  1992年   8篇
  1991年   7篇
  1990年   8篇
  1989年   3篇
  1988年   5篇
  1987年   3篇
  1986年   2篇
  1984年   2篇
  1983年   1篇
  1981年   2篇
  1980年   1篇
  1954年   2篇
排序方式: 共有1389条查询结果,搜索用时 15 毫秒
41.
华北雨季开始早晚与大气环流和海表温度异常的关系   总被引:2,自引:0,他引:2  
本文利用国家气候中心的1961~2016年华北雨季监测资料、美国国家环境预报中心/大气研究中心(NCEP/NCAR)的大气再分析资料、NOAA海表温度资料,分析了华北雨季开始早晚的气候特征,然后利用合成分析、回归分析等方法,研究了华北雨季开始早晚与大气环流系统和关键区域海表温度的关系。结果表明,56 a来华北雨季开始最早在7月6日,最晚在8月10日,1961~2016年华北雨季开始平均日期是7月18日。华北雨季开始时间具有显著的年际变化,但雨季发生早晚的长期变化趋势不太明显。华北雨季开始早晚与西太平洋副热带高压(简称副高)、东亚副热带西风急流、东亚夏季风等环流系统的活动关系密切,当对流层高层副热带西风急流建立偏早偏强,中层西太平洋副高第二次北跳偏早,低层东亚夏季风北进提前时,华北雨季开始偏早,反之华北雨季开始偏晚。华北雨季开始早晚与春、夏季热带印度洋、赤道中东太平洋海表温度关系显著且稳定,当Ni?o3.4指数和热带印度洋全区海表温度一致模态(IOBW)为正值时,贝加尔湖大陆高压偏强,副高偏强偏南,东亚夏季风偏弱,导致华北雨季开始偏晚;当海表温度指数为负值时,则华北雨季开始偏早。  相似文献   
42.
利用GFDL CM2p1模式, 本文探讨了初始海温误差对印度洋偶极子(IOD)事件可预报性的影响. 当热带印度洋存在初始海温误差时, IOD预报发生了冬季预报障碍(WPB)现象和夏季预报障碍(SPB)现象. WPB发生与否与正IOD事件发展位相冬季的厄尔尼诺-南方涛动(ENSO)有关. 即当冬季存在ENSO时, IOD预测不发生WPB现象, 反之亦然. 相比之下, SPB发生与否和ENSO没有必然联系. 此外, 进一步探讨了最容易导致SPB现象的初始海温误差的主要模态, 指出该模态在热带印度洋上表现为东-西偶极子型, 这和前人研究中最容易导致WPB现象的初始海温误差模态相似. 当在热带印度洋上叠加这些初始海温误差后, 热带太平洋上出现了海表温度异常和风场异常, 进而通过大气桥和印尼贯穿流的作用影响热带印度洋, 使之在夏季出现了东-西偶极子型的海表温度异常, 该异常在Bjerknes作用下快速发展, 加强, 最终导致SPB现象的发生.  相似文献   
43.
欧亚春季雪盖对印度洋偶极子的影响   总被引:2,自引:2,他引:0  
文章研究了欧亚春季雪盖对印度洋偶极子的影响。研究发现,欧亚春季雪盖与印度洋偶极子关系密切,两者之间存在显著的反相关关系。欧亚春季雪盖异常导致夏季赤道印度洋垂直纬向环流以及印度洋和欧亚大陆之间的垂直经向环流发生异常,是欧亚春季雪盖与印度洋偶极子存在反相关关系的主要原因。欧亚春季雪盖异常可能是印度洋偶极子发生的一个重要的外在诱发因子。  相似文献   
44.
印度洋海啸灾害特点及其对工程防御的启示   总被引:1,自引:0,他引:1  
印度洋海啸现场调查表明,海啸灾害不同于地震和洪水灾害。海啸通过高水位淹没、浪涌冲击对海边地势低平地区的房屋、道路、桥梁、机场、给排水、供电、通讯等设施以及车辆、船只造成严重破坏。海啸上岸后,由于巨大的冲力,将夹带一些破损建筑产生的固体漂浮物一同前进,破坏力更强。由于淹没、浪涌、冲毁建筑物压埋以及漂浮物冲击等综合作用,造成人员死亡率极高,所过之处,财产皆空。抗御海啸灾害的工程措施主要包括:合理规划(避让、削弱、分流、阻挡)和科学设计(潜在海啸灾害等级划分、结构性态决策、海啸荷载确定、抗海啸分析、构造设计)。  相似文献   
45.
利用东印度洋海域周边长期验潮站实测数据、TOPEX/Poseidon等系列卫星测高反演结果,评估了DTU10,EOT11a,FES2014,GOT4.8,OSU12和TPXO8六种全球潮汐模型精度,根据卫星测高结果给出了浅水分潮改正量和长周期分潮改正量的经验模型,又在此基础上分析并构建了研究区域精度最优的深度基准面模型。考虑到全球潮汐模型在近岸的影响因素及验潮站位置,将13个验潮站分成开阔海域与近海海域两类,与潮汐模型的对比,结果表明,DTU10和FES2014模型分别在开阔海域和近海海域精度最优。根据潮汐模型在不同分潮处的精度,如EOT11a模型在O1和K1分潮处精度较高,DTU10在N2,M2,S2和K2分潮处精度较高等,分别构建了开阔海域与近海海域的组合深度基准面模型,计算得知误差分别为11.33和20.95 cm,其精度显著提高。  相似文献   
46.
We analyzed seafloor morphology and geophysical anomalies of the Southeast Indian Ridge(SEIR) to reveal the remarkable changes in magma supply along this intermediate fast-spreading ridge. We found systematic differences of the Australian-Antarctic Discordance(AAD) from adjacent ridge segments with the residual mantle Bouguer gravity anomaly(RMBA) being more positive, seafloor being deeper, morphology being more chaotic, M factors being smaller at the AAD. These systematic anomalies, as well as the observed Na_(8.0) being greater and Fe_(8.0) being smaller at AAD, suggest relatively starved magma supply and relatively thin crust within the AAD.Comparing to the adjacent ridges segments, the calculated average map-view M factors are relatively small for the AAD, where several Oceanic Core Complexes(OCCs) develop. Close to 30 OCCs were found to be distributed asymmetrically along the SEIR with 60% of OCCs at the northern flank. The OCCs are concentrated mainly in Segments B3 and B4 within the AAD at ~124°–126°E, as well as at the eastern end of Zone C at ~115°E. The relatively small map-view M factors within the AAD indicate stronger tectonism than the adjacent SEIR segments.The interaction between the westward migrating Pacific mantle and the relatively cold mantle beneath the AAD may have caused a reduction in magma supply, leading to the development of abundant OCCs.  相似文献   
47.
Interannual variability(IAV) in the barrier layer thickness(BLT) and forcing mechanisms in the eastern equatorial Indian Ocean(EEIO) and Bay of Bengal(BoB) are examined using monthly Argo data sets during 2002–2017. The BLT during November–January(NDJ) in the EEIO shows strong IAV, which is associated with the Indian Ocean dipole mode(IOD), with the IOD leading the BLT by two months. During the negative IOD phase, the westerly wind anomalies driving the downwelling Kelvin waves increase the isothermal layer depth(ILD). Moreover, the variability in the mixed layer depth(MLD) is complex. Affected by the Wyrtki jet, the MLD presents negative anomalies west of 85°E and strong positive anomalies between 85°E and 93°E. Therefore, the BLT shows positive anomalies except between 86°E and 92°E in the EEIO. Additionally, the IAV in the BLT during December–February(DJF) in the BoB is also investigated. In the eastern and northeastern BoB, the IAV in the BLT is remotely forced by equatorial zonal wind stress anomalies associated with the El Ni?o-Southern Oscillation(ENSO). In the western BoB, the regional surface wind forcing-related ENSO modulates the BLT variations.  相似文献   
48.
An attempt has been made to develop a holistic understanding of upwelling and downwelling along the south-west coast of India. The main objective was to elucidate the roles of different forcings involved in the vertical motion along this coast. The south-west coast of India was characterized by upwelling during the south-west monsoon (May to September) and by downwelling during the north-east monsoon and winter (November to February). The average vertical velocity calculated along the south-west coast from the vertical shift of the 26?°C isotherm is 0.57?m/day during upwelling and 0.698?m/day during downwelling. It was concluded that upwelling along the south-west coast of India is driven by offshore Ekman transport due to the alongshore wind, Ekman pumping, horizontal divergence of currents and by the propagation of coastally trapped waves. Whereas downwelling along the coast is driven only by convergence of currents and the propagation of coastally trapped Kelvin waves. Along the west coast of India, the downwelling-favorable Kelvin waves come from the equator and upwelling-favorable waves come from the Gulf of Mannar region.  相似文献   
49.
The carbonate-free fraction of 20 surface sediments collected from the ultraslow-spreading Southwest Indian Ridge(SWIR) was studied by grain size analysis and mineralogical analysis with X-ray powder diffraction(XRD),stereo microscopy and scanning electron microscopy(SEM). The characteristics of the carbonate-free fraction of the sediments were obtained, and related influential factors were discussed. The results show that the mean grain size of this fraction is in 1.96Φ–8.19Φ, with poorly sorting and unimodal, bimodal or irregular bimodal distribution patterns. Four grain size end members of the fraction are derived with the End Member Model method. The finest end member EM1 shows a significant contribution of terrigenous materials of the aeolian input and sediment carried by the bottom current. End member EM2 with medium size mainly reflects sediment of a siliceous bioclast origin. EM3 and EM4 are interpreted as representing the coarser volcanic materials related to bedrock weathering or volcanic activities. Multi-provenance is the dominant factor controlling the grain size pattern of the carbonate-free fraction of the sediments in that area. In addition, sediment transport processes such as the bottom current and wind are the minor factors that influence the grain size distribution of the carbonate-free fraction sediments.  相似文献   
50.
In this paper, effort is made to demonstrate the quality of high-resolution regional ocean circulation model in realistically simulating the circulation and variability properties of the northern Indian Ocean(10°S–25°N,45°–100°E) covering the Arabian Sea(AS) and Bay of Bengal(BoB). The model run using the open boundary conditions is carried out at 10 km horizontal resolution and highest vertical resolution of 2 m in the upper ocean.The surface and sub-surface structure of hydrographic variables(temperature and salinity) and currents is compared against the observations during 1998–2014(17 years). In particular, the seasonal variability of the sea surface temperature, sea surface salinity, and surface currents over the model domain is studied. The highresolution model's ability in correct estimation of the spatio-temporal mixed layer depth(MLD) variability of the AS and BoB is also shown. The lowest MLD values are observed during spring(March-April-May) and highest during winter(December-January-February) seasons. The maximum MLD in the AS(BoB) during December to February reaches 150 m (67 m). On the other hand, the minimum MLD in these regions during March-April-May becomes as low as 11–12 m. The influence of wind stress, net heat flux and freshwater flux on the seasonal variability of the MLD is discussed. The physical processes controlling the seasonal cycle of sea surface temperature are investigated by carrying out mixed layer heat budget analysis. It is found that air-sea fluxes play a dominant role in the seasonal evolution of sea surface temperature of the northern Indian Ocean and the contribution of horizontal advection, vertical entrainment and diffusion processes is small. The upper ocean zonal and meridional volume transport across different sections in the AS and BoB is also computed. The seasonal variability of the transports is studied in the context of monsoonal currents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号