首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   426篇
  免费   28篇
  国内免费   47篇
测绘学   9篇
大气科学   21篇
地球物理   53篇
地质学   267篇
海洋学   3篇
天文学   3篇
综合类   27篇
自然地理   118篇
  2024年   1篇
  2023年   1篇
  2022年   13篇
  2021年   17篇
  2020年   13篇
  2019年   17篇
  2018年   9篇
  2017年   12篇
  2016年   14篇
  2015年   16篇
  2014年   28篇
  2013年   32篇
  2012年   24篇
  2011年   41篇
  2010年   28篇
  2009年   29篇
  2008年   21篇
  2007年   34篇
  2006年   23篇
  2005年   14篇
  2004年   16篇
  2003年   15篇
  2002年   7篇
  2001年   5篇
  2000年   7篇
  1999年   21篇
  1998年   6篇
  1997年   6篇
  1996年   8篇
  1995年   5篇
  1994年   3篇
  1993年   3篇
  1992年   4篇
  1991年   2篇
  1989年   2篇
  1986年   1篇
  1982年   1篇
  1977年   1篇
  1954年   1篇
排序方式: 共有501条查询结果,搜索用时 15 毫秒
261.
海螺沟冰川公园的开发与保护   总被引:5,自引:0,他引:5  
涨螺沟冰川是世界下可多得的自然遗产,随着海螺冰川公园旋游业的蓬勃发展和资源本身所处的地质环境条件,在旅游开发的过程中,出现了一些潜在的环境问题,通过分析这些环境问题,针对性地提出了相应的环境保护对策。  相似文献   
262.
Mass balance of the Lambert Glacier basin, East Antarctica   总被引:2,自引:1,他引:2  
Since it is the largest glacier system in Antarctica, the Lambert Glacier basin plays an important role in the mass balance of the overall Antarctic ice sheet. The observed data and shallow core studies from the inland traverse investigations in recent years show that there are noticeable differences in the distribution and variability of the snow accumulation rate between east and west sides. On the east side, the accumulation is higher on the average and has increased in the past decades, while on the west side it is contrary. The ice movement measurement and the ice flux calculation indicate that the ice velocity and the flux are larger in east than in west, meaning that the major part of mass supply for the glacier is from the east side. The mass budget estimate with the latest data gives that the integrated accumulation over the upstream area of the investigation traverse route is larger than the outflow ice flux by 13%, suggesting that the glacier basin is in a positive mass balance state and the ice thickness will increase if the present climate is keeping.  相似文献   
263.
During a 3-year period, several aspects of the glacier-rock interface were studied in a cavity beneath 5–8 m of ice near the terminus of Grinnell Glacier, Montana, U.S.A. Continuous week-long records of the summer sliding rate revealed a very uniform speed of about 12 m a?1 during the summer, a value about 20 per cent higher than the average annual sliding rate. Several decimetre-sized rock fragments were broken from the glacier bed near the lee sides of bedrock ledges and transported down-glacier. In the course of a two-week long experiment, the glacier abraded its bed significantly and non-uniformly. It is of interest that significant quarrying and abrasion occurred under thin ice with relatively little entrained debris.  相似文献   
264.
We give an overview of a glacio-meteorological experiment carried out in the summer (melt season) of 1996 on the largest European ice cap, Vatnajökull, Iceland (area 8000 km2; altitude range: from sea level to about 2000 m). The main goal was to understand how the energy used in the melting of snow and ice is delivered to the surface. Many meteorological stations were operated simultaneously on the ice cap, at almost all of which profile measurements were made. Cable balloons and radiosondes were used to probe the vertical structure of the boundary layer. It appears that the flow near the surface is katabatic most of the time, with the height of the wind maximum varying between a few metres and a few tens of metres. It is only during the passage of intense storms that the katabatic wind in the melt zone disappears. Global radiation increases significantly with altitude. Surface albedo varies enormously in space and time, with very low values ( 0.1) being found at many places because of the melt out of volcanic ash layers. If we consider the total melt in the period 22 May–31 August 1996, we conclude that radiation typically provides two-thirds of the melt energy, and turbulent exchange of heat one-third. At locations high on the glacier, turbulent exchange becomes less significant.  相似文献   
265.
During the 1992-1993 joint Australian-Chinese over-snow traverse of the western Lambert Glacier Basin (LGB), two firn cores were drilled respectively at MGA and LGB16. During the 1996-1997 and 1997-1998 austral summers, two firn cores were drilled respectively at DT001 and DT085 on the eastern LGB. Based on the measurements made during the expeditions, the climatic and environmental features on both sides of the LGB have been studied. Results show that during the past 50 years, the trends of both air temperature and accumulation rate show a slight increase on the east side of the LGB, in contrast to the west side of the LGB. The spatial trends of the accumulation rate measured by accumulation canes at 2 km intervals along the nearly 500 km of the traverse lines on both sides of the LGB are different. Moreover, correlations of δ18O vs T10 along the two sides of the LGB are also different. In addition, the variations of sea salt ion concentrations show different trends in the past 50 years. All the evidence shows that the Lambert Glacier is a dividing region for the different climatic regimes over the East Antarctic ice sheet, which may be due to different moisture resources resulting from special local circumfluence such as cyclone activities, local terrain influences.  相似文献   
266.
The daily water balance for the drainage basin of Koryto Glacier, Kamchatka Peninsula, Russia, was calculated during the period from August to September 2000. The result shows that 14×106 m3 of meltwater and 2×106 m3 of rainwater entered the basin, while 26×106 m3 of water drained from the basin through proglacial streams. Thus, about ?9×106 m3 of water storage reduction occurred in the basin. Vertical displacements of the glacier surface showed that the volume change due to contraction of subglacial cavities was nearly 20% of the total storage change. The remaining fraction of water storage during the period is thought to be stored in englacial and supraglacial locations. The estimate of water balance components in the early ablation season in 2000 indicates that meltwater was already stored within the glacier before the spring, even during the previous year, and that the stored water drained through the ablation season.  相似文献   
267.
天山乌鲁木齐河源1号冰川夏季消融期内反射率的变化   总被引:3,自引:5,他引:3  
白重瑗 《冰川冻土》1989,11(4):311-334
  相似文献   
268.
We relocated over 1000 earthquakes of magnitude > 0.1 occurring between 1973 and 2001 in the Bering Glacier region of southern Alaska. We used first-motion data from these events to determine focal mechanisms and directly invert for stress orientations. Our results indicate that much of the seismicity in the region is occurring within the North American plate in a zone where an inferred structure, which lies beneath Bering Glacier, intersects the Chugach-St. Elias fault system. Stress-field analysis indicates that the events in the Bering Glacier surge reservoir region are likely occurring on northeast-trending thrust faults, consistent with previous modeling that suggested thrust faulting would be enhanced in regions of ice draw down. We also observe a stress field compatible with either high-angle normal or reverse faulting in regions located northwest of the Bering Glacier. This may indicate localized complexities in interactions between the Bering Glacier structure and the Chugach-St. Elias fault system.  相似文献   
269.
The molar ratios of atmospheric gases change during dissolution in water due to differences in their relative solubilities. We exploited this characteristic to develop a tool to clarify the origin of ice formations in permafrost regions. Extracted from ice, molar gas ratios can distinguish buried glacier ice from intrasedimental ground ice formed by freezing groundwaters. An extraction line was built to isolate gases from ice by melting and trapping with liquid He, followed by analysis of N2, O2,, Ar, 18OO2 and 15NN2, by continuous flow mass spectrometry. The method was tested using glacier ice, aufeis ice (river icing) and intrasedimental ground ice from sites in the Canadian Arctic. O2/Ar and N2/Ar ratios clearly distinguish between atmospheric gas in glacial ice and gases from intrasedimental ground ice, which are exsolved from freezing water. δ15NN2 and δ18OO2 in glacier ice, aufeis ice and intrasedimental ground ice do not show clear distinguishing trends as they are affected by various physical processes during formation such as gravitational settling, excess air addition, mixing with snow pack, and respiration.  相似文献   
270.
《China Geology》2021,4(3):389-401
Glaciers are crucial water resources for arid inland rivers in Northwest China. In recent decades, glaciers are largely experiencing shrinkage under the climate-warming scenario, thereby exerting tremendous influences on regional water resources. The primary role of understudying watershed scale glacier changes under changing climatic conditions is to ensure sustainable utilization of regional water resources, to prevent and mitigate glacier-related disasters. This study maps the current (2020) distribution of glacier boundaries across the Kaidu-Kongque river basin, south slope of Tianshan Mountains, and monitors the spatial evolution of glaciers over five time periods from 2000–2020 through thresholded band ratios approach, using 25 Landsat images at 30 m resolution. In addition, this study attempts to understand the role of climate characteristics for variable response of glacier area. The results show that the total area of glaciers was 398.21 km2 in 2020. The glaciers retreated by about 1.17 km2/a (0.26%/a) from 2000 to 2020. The glaciers were reducing at a significantly rapid rate between 2000 and 2005, a slow rate from 2005 to 2015, and an accelerated rate during 2015–2020. The meteorological data shows slight increasing trends of mean annual temperature (0.02°C/a) and annual precipitation (2.07 mm/a). The correlation analysis demonstrates that the role of temperature presents more significant correlation with glacier recession than precipitation. There is a temporal hysteresis in the response of glacier change to climate change. Increasing trend of temperature in summer proves to be the driving force behind the Kaidu-Kongque basin glacier recession during the recent 20 years.© 2021 China Geology Editorial Office.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号