首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   396篇
  免费   49篇
  国内免费   35篇
测绘学   4篇
大气科学   16篇
地球物理   58篇
地质学   275篇
海洋学   22篇
天文学   6篇
综合类   9篇
自然地理   90篇
  2024年   1篇
  2023年   1篇
  2022年   7篇
  2021年   9篇
  2020年   9篇
  2019年   19篇
  2018年   6篇
  2017年   19篇
  2016年   13篇
  2015年   16篇
  2014年   20篇
  2013年   23篇
  2012年   10篇
  2011年   23篇
  2010年   22篇
  2009年   27篇
  2008年   47篇
  2007年   31篇
  2006年   34篇
  2005年   30篇
  2004年   14篇
  2003年   8篇
  2002年   12篇
  2001年   10篇
  2000年   10篇
  1999年   7篇
  1998年   5篇
  1997年   5篇
  1996年   1篇
  1995年   5篇
  1994年   7篇
  1993年   2篇
  1992年   5篇
  1991年   5篇
  1990年   4篇
  1989年   4篇
  1988年   3篇
  1987年   4篇
  1986年   1篇
  1983年   1篇
排序方式: 共有480条查询结果,搜索用时 31 毫秒
321.
Subglacial erratic assemblages derived and dispersed from the Tynagh mineral deposit, SE County Galway, Ireland have been mapped in order to facilitate the reconstruction of Late Midlandian temporal ice flow dynamics over the area. Broadly concomitant Pb, Cu and Zn subsoil sediment anomalies define a ribbon type erratic plume (3D) extending for up to 5.75 km east (095°) of the Tynagh orebody composite source, in-line with other, local subglacial geomorphological evidence of ice flow. The eastern sector of a fragmented surficial fan-shaped erratic clast train (2D) aligns with the plume, the remainder of the assemblage orientated towards the south (095-175°). The alignment of the erratic plume, subglacial streamlined bedforms and eskers indicate that the plume and bedforms formed (pene)contemporaneously followed by esker development, all elements produced during the early deglacial phase of the Late Midlandian Irish Ice Sheet. The SE-S portion of the erratic train is ascribed to a previous period of ice flow southwards. Only multiple phase models of the Late Midlandian Irish Ice Sheet, that include or can accommodate a time transgressive element, can accurately represent the configuration of ice flow indicators both in the Tynagh area and surrounding region. It is possible that such erratic assemblages are far more ephemeral than previously considered.  相似文献   
322.
323.
During the late Wisconsin, glacial flour from alpine glaciers along the east side of the Cascade Range in southern Oregon was deposited in Upper Klamath Lake. Quantitative interpretation of magnetic properties and grain-size data of cored sediments from Caledonia Marsh on the west side of the lake provides a continuous record of the flux of glacial flour spanning the last 37 000 calendar years. For modeling purposes, the lake sediments from the 13-m core were divided into three sedimentary components defined from magnetic, geochemical, petrographic, and grain-size data. The components are (1) strongly magnetic, glacial flour made up of extremely fine-grained, fresh volcanic rock particles, (2) less magnetic lithic material made up of coarser, weathered volcanic detritus, and (3) non-magnetic biogenic material (largely biogenic silica). Quantitative interpretation is possible because there has been no significant postdepositional destruction or formation of magnetic minerals, nor alteration affecting grain-size distributions. Major steps involved in the interpretation include: (1) computation of biogenic and lithic components; (2) determination of magnetic properties and grain-size distributions of the non-glacial and glacial flour end-members; (3) computation of the contents of weathered and glacial flour components for each sample; (4) development of an age model based on the mass accumulation of the non-glacial lithic component; and (5) use of the age model and glacial flour contents to compute the flux of glacial flour. Comparison of the glacial flour record from Upper Klamath Lake to mapped glacial features suggests a nearly linear relation between flux of glacial flour and the extent of nearby glaciers. At 22 ka, following an extended period during which glaciers of limited size waxed and waned, late Wisconsin (Waban) glaciers began to grow, reaching their maximum extent at 19 ka. Glaciers remained near their maximum extent for 1000 years. During this period, lake sediments were made up of 80% glacial flour. The content of glacial flour decreased as the glaciers receded, and reached undetectable levels by 14 ka.  相似文献   
324.
Cosmogenic surface exposure ages of glacial boulders deposited in ice-marginal Lake Musselshell suggest that the lake existed between 20 and 11.5 ka during the Late Wisconsin glacial stage (MIS 2), rather than during the Late Illinoian stage (MIS 6) as traditionally thought. The altitude of the highest ice-rafted boulders and the lowest passes on the modern divide indicate that glacial lake water in the Musselshell River basin reached at least 920–930 m above sea level and generally remained below 940 m. Exposures of rhythmically bedded silt and fine sand indicate that Lake Musselshell is best described as a slackwater system, in which the ice-dammed Missouri and Musselshell Rivers rose and fell progressively throughout the existence of the lake rather than establishing a lake surface with a stable elevation. The absence of varves, deltas and shorelines also implies an unstable lake. The changing volume of the lake implies that the Laurentide ice sheet was not stable at its southernmost position in central Montana. A continuous sequence of alternating slackwater lake sediment and lacustrine sheetflood deposits indicates that at least three advances of the Laurentide ice sheet occurred in central Montana between 20 and 11.5 ka. Between each advance, it appears that Lake Musselshell drained to the north and formed two outlet channels that are now occupied by extremely underfit streams. A third outlet formed when the water in Lake Musselshell fully breached the Larb Hills, resulting in the final drainage of the lake. The channel through the Larb Hills is now occupied by the Missouri River, implying that the present Missouri River channel east of the Musselshell River confluence was not created until the Late Wisconsin, possibly as late as 11.5 ka.  相似文献   
325.
Analysis of climatic and topographic evidence from the Cascade Range of Washington State indicates that glacial erosion limits the height and controls the morphology of this range. Glacial erosion linked to long-term spatial gradients in the ELA created a tilted, planar zone of 373 cirques across the central part of the range; peaks and ridges now rise ≤600 m above this zone. Hypsometric analysis of the region shows that the proportion of land area above the cirques drops sharply, and mean slopes >30° indicate that the areas above the cirques may be at or near threshold steepness. The mean plus 1σ relief of individual cirque basins (570 m) corresponds to the ∼600-m envelope above which peaks rarely rise. The summit altitudes are set by a combination of higher rates of glacial and paraglacial erosion above the ELA and enhanced hillslope processes due to the creation of steep topography. On the high-precipitation western flank of the Cascades, the dominance of glacial and hillslope erosion at altitudes at and above the ELA may explain the lack of a correspondence between stream-power erosion models and measured exhumation rates from apatite (U-Th/He) thermochronometry.  相似文献   
326.
Glacial geomorphology around the Northern Patagonian Icefield indicates that a number of fast-flowing outlet glaciers (the continuation of ice streams further upglacier) drained the icefield during the Last Glacial Maximum. These topographically controlled fast-flowing glaciers may have dictated the overall pattern of Last Glacial Maximum ice discharge, lowered the ice-surface profile, and forced the ice-divide westward. The influence of the fast-flowing outlet glaciers on icefield behavior also helps to explain why the configuration of the Patagonian Icefield at the Last Glacial Maximum is not accurately represented in existing numerical ice-sheet models. Fast-flowing outlet glaciers would have strongly influenced ice discharge patterns and therefore partially decoupled the icefield from climatically induced changes in thickness and extent.  相似文献   
327.
Little is known about the response of terrestrial East Antarctica to climate changes during the last glacial-interglacial cycle. Here we present a continuous sediment record from a lake in the Larsemann Hills, situated on a peninsula believed to have been ice-free for at least 40,000 yr. A mutli-proxy data set including geochronology, diatoms, pigments and carbonate stable isotopes indicates warmer and wetter conditions than present in the early part of the record. We interpret this as Marine Isotope Stage 5e after application of a chronological age-depth model and similar ice core evidence. Dry and cold conditions are inferred during the last glacial, with lake-level minima, floristic changes towards a shallow water algal community, and a greater biological receipt of ultraviolet radiation. During the Last Glacial Maximum and Termination I the lake was perennially ice-covered, with minimal snowmelt in the catchment. After ca. 10,500 cal yr B.P., the lake became seasonally moated or ice-free during summer. Despite a low accumulation rate, the sediments document some Holocene environmental changes including neoglacial cooling after ca. 2450 cal yr B.P., and a gradual increase in aridity and salinity to the present.  相似文献   
328.
The major climatic variations that have affected the summit slopes of the higher Apennine massifs in the last 6000 yr are shown in alternating layers of organic matter-rich soils and alluvial, glacial and periglacial sediments. The burial of the soils, triggered by environmental-climatic variations, took place in several phases. For the last 3000 yr chronological correlations can be drawn between phases of glacial advance, scree and alluvial sedimentation and development of periglacial features. During some periods, the slopes were covered by vegetation up to 2700 m and beyond, while in other phases the same slopes were subject to glacial advances and periglacial processes, and alluvial sediments were deposited on the high plateaus. Around 5740-5590, 1560-1370 and 1300-970 cal yr B.P., organic matter-rich soils formed on slopes currently subject to periglacial and glacial processes; the mean annual temperature must therefore have been higher than at present. Furthermore, on the basis of the variations in the elevation of the lower limit reached by gelifraction, it can be concluded that the oscillations in the minimum winter temperatures could have ranged between 3.0°C lower (ca. 790-150 cal yr B.P.) and 1.2°C higher (ca. 5740-5590 cal yr B.P.) than present minimum winter temperatures. During the last 3000 yr the cold phases recorded by the Calderone Glacier advance in the Apennines essentially match basically the phases of glacial advance in the Alps.  相似文献   
329.
Jökulhlaups are the consequence of a sudden and significant release of meltwater from the edge of a glacier. Such floods are sourced commonly from ice-dammed lakes, but occasional volcanic eruptions beneath ice can produce intense jökulhlaups due to prodigious rates of meltwater release. Globally, volcanogenic jökulhlaups have caused fatalities and damage to infrastructure within effected catchments. Here, we present the results of one-dimensional hydraulic modelling of the inundation area of a massive, hypothetical jökulhlaup on the Jökulsá á Fjöllum River in northeast Iceland; the floodwater source for this simulation is an eruption within the ice-filled caldera of Bárðarbunga: an active volcano beneath the Vatnajökull ice cap. Remotely sensed data were used to derive a digital elevation model and to assign surface-roughness parameters. We used a HEC-RAS/HEC-GeoRAS system to host the hydraulic model; to calculate the steady water-surface elevation; to visualise the flooded area; and to assess flood hazards. Maximum discharge was set notionally at 180,000 m3 s?1 and the duration and volume of the jökulhlaup were placed at 39 h and 14 km3, respectively. During the simulated rise to maximum discharge, the mean velocity of the jökulhlaup was 2.8 m s?1 over a distance of 120 km. At the height of the jökulhlaup an area of 460 km2 was inundated. Modelling results showed that, along short reaches, stream-power values exceeded 11,000 W m?2; such energy conditions would have allowed boulders up to 10-m in diameter to be mobilised by the jökulhlaup. Unsteady flow was simulated along a 22-km reach of the flood tract and it revealed strong spatial and temporal variations in flood power. Besides providing insight into the erosional and depositional effects of a volcanogenic jökulhlaup, the modelling results enable estimates of the relative timing and location of likely flooding hazards.  相似文献   
330.
We present a new GPS-derived 3D velocity field for the Fennoscandia glacial isostatic adjustment (GIA) area. This new solution is based upon ∼3,000 days of continuous GPS observations obtained from the permanent networks in Fennoscandia. The period encompasses a prolongated phase of stable observation conditions after the northern autumn of 1996. Several significant improvements have led to smaller uncertainties and lower systematic errors in the new solutions compared to our previous results. The GPS satellite elevation cut-off angle was lowered to 10°, we fixed ambiguities to integers where possible, and only a few hardware changes occurred over the entire network. The GAMIT/GLOBK software package was used for the GPS analysis and reference frame realization. Our new results confirmed earlier findings of maximum discrepancies between GIA models and observations in northern Finland. The reason may be related to overestimated ice-sheet thickness and glaciation period in the north. In general, the new solutions are more coherent in the velocity field, as some of the perturbations are now avoided. We compared GPS-derived GIA rates with sea-level rates from tide-gauge observations, repeated precise leveling, and with GIA model computations, which showed consistency.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号