首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1841篇
  免费   349篇
  国内免费   269篇
测绘学   65篇
大气科学   299篇
地球物理   261篇
地质学   874篇
海洋学   172篇
天文学   43篇
综合类   103篇
自然地理   642篇
  2024年   35篇
  2023年   46篇
  2022年   87篇
  2021年   119篇
  2020年   88篇
  2019年   104篇
  2018年   83篇
  2017年   102篇
  2016年   97篇
  2015年   90篇
  2014年   104篇
  2013年   97篇
  2012年   112篇
  2011年   93篇
  2010年   75篇
  2009年   85篇
  2008年   81篇
  2007年   104篇
  2006年   105篇
  2005年   71篇
  2004年   80篇
  2003年   73篇
  2002年   68篇
  2001年   61篇
  2000年   63篇
  1999年   53篇
  1998年   46篇
  1997年   47篇
  1996年   35篇
  1995年   35篇
  1994年   23篇
  1993年   20篇
  1992年   12篇
  1991年   17篇
  1990年   9篇
  1989年   14篇
  1988年   7篇
  1987年   7篇
  1986年   3篇
  1985年   3篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有2459条查询结果,搜索用时 0 毫秒
11.
Warming will affect snowline elevation, potentially altering the timing and magnitude of streamflow from mountain landscapes. Presently, the assessment of potential elevation‐dependent responses is difficult because many gauged watersheds integrate drainage areas that are both snow and rain dominated. To predict the impact of snowline rise on streamflow, we mapped the current snowline (1980 m) for the Salmon River watershed (Idaho, USA) and projected its elevation after 3 °C warming (2440 m). This increase results in a 40% reduction in snow‐covered area during winter months. We expand this analysis by collecting streamflow records from a new, elevation‐stratified gauging network of watersheds contained within high (2250–3800 m), mid (1500–2250 m) and low (300–1500 m) elevations that isolate snow, mixed and rain‐dominated precipitation regimes. Results indicate that lags between percentiles of precipitation and streamflow are much shorter in low elevations than in mid‐ and high‐elevation watersheds. Low elevation annual percentiles (Q25 and Q75) of streamflow occur 30–50 days earlier than in higher elevation watersheds. Extreme events in low elevations are dominated by low‐ and no‐flow events whereas mid‐ and high‐elevation extreme events are primarily large magnitude floods. Only mid‐ and high‐elevation watersheds are strongly cross correlated with catchment‐wide flow of the Salmon River, suggesting that changes in contributions from low‐elevation catchments may be poorly represented using mainstem gauges. As snowline rises, mid‐elevation watersheds will likely exhibit behaviours currently observed only at lower elevations. Streamflow monitoring networks designed for operational decision making or change detection may require modification to capture elevation‐dependent responses of streamflow to warming. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
12.
Channelization of the lowermost part of Vedder River in 1922 initiated a natural experiment relevant to the unresolved question of how abrupt gravel–sand transitions develop along rivers. The new channel (Vedder Canal) had a fine bed and a much lower slope than the gravel‐bed river immediately upstream. Changes in morphology and sedimentology as gravel advanced into and along the Canal are documented using air photos, historical surveys, and fieldwork. The channel aggraded and steepened until stabilized by occasional gravel extraction in recent decades. The deposited material fines progressively along the Canal but the gravel front has retained an abrupt appearance because it has advanced by the sequential development of discrete gravel tops on initially sandy alternate bars. Near the gravel front the bed is highly bimodal and there is a sharper drop in the extent of gravel‐framework surface facies than in bulk gravel content. Ahead of the front, gravel is restricted to thin ribbons which often become buried by migrating sand. Calculations show that even though the gravel bed at the head of the Canal is almost unimodal, size‐selective transport during floods can account for the strong bimodality farther downstream. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
13.
刘建坤  鲍维猛  黎明  葛建军 《冰川冻土》2004,26(Z1):210-214
The design of roadbed-abutment transition part is always a challenging problem in transportation engineering, especially in permafrost distribution zone. A new type of roadbed-abutment transition part on permafrost was presented, and long-term observation was conducted for the deformation and the thermal regime of a roadbed-abutment transition part in the constructing Qinghai-Tibet Railway. In this paper, a new structure was presented and the observed settlements both in the subgrade and the base and its dependency with the thermal regime (permafrost table) were analyzed. In conclusion the roadbed-a-butment transition method for permafrost distribution zone was evaluated.  相似文献   
14.
中国西北现代气候变化事实与未来趋势展望   总被引:167,自引:30,他引:167  
利用西北地区建站至2000年常规气象观测站资料及美国NCEP/NCAR再分析全球网格点资料,分析了西北地区现代气候变化的特点,揭示了西北地区气候由暖干转向暖湿的事实.在此基础上对未来几十年气候变化趋势作了初步估计.  相似文献   
15.
结合地质工作特点,概述了计算机多媒体技术在地质科研、地质教育、成果汇报演示以及地质信息管理方面的应用成果,展示了多媒体技术在地学领域中的应用前景。  相似文献   
16.
Ki-Suk Lee 《GeoJournal》1998,44(3):249-257
Since the Tumen River Area Development Project(TRADP) was launched in 1991, Hunchun city located between North Korea and Russia along the river corridor, has become an important and unique border city. Hunchun, formerly a strategic military city, is emerging as an international trade linkage center through Satouz and Quanhe on the North Korea side and through Changlinzi on the Russian side. Furthermore, the establishment and operation of the Hunchun Border Economic Cooperation Zone (HBECZ) in the city is becoming the main source of the growth, providing a new role for the border city. Its underlying economic momentum comes from the combination of the Chinese-Korean labor force and foreign investment and technology transferred from Korea, Japan, and others. The most important expected new role for Hunchun is as a new 21st century entrepot connection between the Pacific rim and Eurasia by rail and trunk lines, and as a new regional center of the border region based on both a newly generated urban subsystem and the increasing informal sector of cross border business. However, there are many obstacles to overcome in the near future, such as the possible military tensions among the three border nations, the guarantee of free entries and sailing on the Tumen river, and agreements concerning environmental conservation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
17.
采用最近邻指数、Ripley’s L函数、核密度估计等方法分析长江经济带开发区的空间分布与产业集聚特征,结果表明:①长江经济带开发区总体上呈东密西疏、东强西弱、东中西段分异的显著集聚分布特征;②基于主导产业划分的各类开发区在空间上均为集聚分布,集聚强度和规模随距离的增加基本都呈"先增加后减小"的规律,集聚形态各异,主要有"单核心""双核心""多核心"3种;③长江经济带东段地区主要以装备制造、通信电子、汽车制造、新材料、生物医药等资本技术密集型产业集聚为主,中、西段地区则集聚了化学工业、金属加工、食品制造、纺织服装等资本与劳动密集型产业。要加强经济带上中下游开发区之间的多维良性互动,注重绿色发展、创新发展与结构优化,进一步提升其对长江经济带高质量发展的引领与支撑作用。  相似文献   
18.
“流空间”是人文-经济地理学关注的重要议题。基于城际客运交通流数据,运用ArcGIS空间分析、城市联系强度模型等方法对长江经济带长三角、长江中游、成渝三大城市群城际客运联系网络结构特征进行刻画,结果表明:①长三角城市群城际客运联系网络以上海市为主核心,苏州、南京、杭州为次核心,通过核心城市向外延伸的交通轴线组成相互之间联系紧密的城市网络,西部与南部地区的联系相对较弱;长江中游城市群城际客运联系网络以武汉、长沙、南昌三个省会城市为核心节点,周边次中心城市与其省会交通联系紧密,但城市间跨省联系较弱,本省城市仅与另外两个省会城市存在突出的向心性联系;成渝城市群高等级联系网络大多指向成都、重庆主城区,次级区域中心城市发育不足,成渝城市主轴线在强交通联系推动下发育成型,但川渝接壤地区的城际客运联系存在“断层”。②长江经济带三大城市群在网络化演化进程中,具有城市群“等级-网络”的基本演化特征,其中成渝城市群、长江中游城市群仍处于“核心-边缘”的双核或三核结构,长三角城市群已出现多核网络化发展趋势。③高速铁路作为新兴要素流,对公路、普通铁路等传统要素流具有明显的替代效应,增强了三大城市群核心城市向外延伸的轴线联系,是驱动城市群城际客运联系网络结构演变的新动力。  相似文献   
19.
汪德根  徐银凤  赵美风 《地理学报》2021,76(8):1997-2015
作为长江经济带综合立体交通走廊建设的关键环节,交通枢纽是推动长江经济带发展的基础保障。高铁枢纽承载着“时空压缩最后一公里”效应,是构筑高效便捷的现代化综合交通体系的关键。首先诠释了高铁枢纽“时空压缩最后一公里”效应原理,其次构建高铁枢纽接驳—集疏运绩效指标体系,进而对长江经济带37个城市高铁枢纽的接驳—集疏运绩效进行测度,并分析绩效空间分异特征,最后揭示高铁枢纽接驳—集疏运绩效的影响机理。结果显示:① 长江经济带高铁枢纽接驳—集疏运绩效等级分异呈“橄榄型”结构,即优质绩效和一般绩效的高铁站数量较少,良好绩效和中等绩效的高铁站数量较多;② 地带分异呈“东高西低、北高南低”格局,而城市群分异则呈“核心高、边缘低”格局,且9个评价指标值空间差异明显;③ GDP、城镇化率、城市等级、车站客流量和发送班车次数是影响高铁枢纽接驳—集疏运绩效的关键驱动因子;同时,优质、良好、中等和一般等不同等级绩效的关键驱动因子存在显著差异。  相似文献   
20.
生态系统脆弱性受到自然与人文因素双重影响。以广西西江经济带为例,采用VSD模型,通过暴露度、敏感性和适应能力分解脆弱性,构建包含自然和人为因素的25指标的评价体系,开展脆弱性评价与分区。结果表明,不脆弱区、一般区、脆弱区、很脆弱区和极脆弱区分别占11.31%、22.63%、27.60%、24.39%和14.07%,东西部地区脆弱性较高,中部地区脆弱性较低;自然因素导致的脆弱区主要分布于东西部山区,人为因素主导的脆弱区分布于中部盆地的城镇及其周边;经济带约53%的建设用地分布于很脆弱区和脆弱区,未来新增建设用地需要重点向不脆弱区和一般区转移。根据分区结果和诱因差异,提出了不同类型区开发与保护的相关建议。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号