首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   234篇
  免费   2篇
  国内免费   1篇
地球物理   24篇
地质学   45篇
海洋学   31篇
天文学   1篇
自然地理   136篇
  2022年   2篇
  2021年   2篇
  2018年   1篇
  2015年   2篇
  2014年   4篇
  2013年   1篇
  2012年   2篇
  2011年   10篇
  2010年   5篇
  2009年   18篇
  2008年   28篇
  2007年   31篇
  2006年   33篇
  2005年   28篇
  2004年   17篇
  2003年   20篇
  2002年   11篇
  2001年   4篇
  2000年   3篇
  1999年   1篇
  1997年   2篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1983年   2篇
排序方式: 共有237条查询结果,搜索用时 15 毫秒
101.
In the central Great Plains of North America, loess stratigraphy suggests that climate during the late Pleistocene was cold and dry. However, this record is discontinuous, and there are few other records of late-Pleistocene conditions. Cobb Basin, located on the northern edge of the Nebraska Sand Hills, contains lacustrine sediments deposited during Marine Isotope Stage 3, beginning approximately 45,000 cal yr BP and continuing for at least 10,000 yr. The lake was formed by a dune dam blockage on the ancient Niobrara River, and its deposits contain a diatom record that indicates changes through time in lake depth driven by changes in effective moisture. During the earliest stages of lake formation, the climate was arid enough to mobilize dunes and emplace dune sand into a blocking position within the Niobrara streambed. Diatom assemblages suggest that lake-level was shallow at formation, increased substantially during a wet interval, and then became shallow again, as arid conditions resumed. By about 27,000 cal yr BP the lake was filled, and a shallow ephemeral river occupied the basin.  相似文献   
102.
A 2-year (October 2003–October 2005) high-resolution sediment trap study was conducted in Sacrower See, a dimictic hardwater lake in northeastern Germany. Geochemical and diatom data from sediment trap samples were compared with a broad range of limnological and meteorological parameters to quantify the impact of single parameters on biochemical calcite precipitation and organic matter production. Our goals were to disentangle how carbonaceous varves and their sublaminae form during the annual cycle to better understand the palaeorecords and to detect influences of dissolution, resuspension as well as of global radiation and stratification on lake internal particle formation. Total particle fluxes in both investigated years were highest during spring and summer. Sedimentation was dominated by autochthonous organic matter and biochemically precipitated calcite. Main calcite precipitation occurred between April and July and was preceded and followed by smaller flux peaks caused by resuspension during winter and blooms of the calcified green algae Phacotus lenticularis during summer. In some of the trap intervals during summer up to 100% of the precipitated calcite was dissolved in the hypolimnion. High primary production due to stable insolation conditions in epilimnic waters began with stratification of the water column. Start and development of stratification is closely related to air and water surface temperatures. It is assumed that global radiation influences the onset and stability of water column stratification and thereby determining the intensity of primary production and consequently of timing and amount of calcite precipitation which is triggered by phytoplanktonic CO2 consumption. Sediment fluxes of organic matter and calcite are also related to the winter NAO-Index. Therefore these fluxes will be used as a proxy for ongoing reconstruction of Holocene climate conditions.  相似文献   
103.
We investigated the modern distribution of fossil midges within a dimictic lake and explored downcore patterns of inferred lake depths over the last 2000 years from previously published proxies. Modern midge distribution within Gall Lake showed a consistent and predictable pattern related to the lake-depth gradient with recognizable assemblages characteristic of shallow-water, mid-depth and profundal environments. Interpretations of downcore changes in midge assemblages, in conjunction with quantitative lake-depth inferences across a priori defined (based on diatom data) ~ 500-yr wet and dry periods, demonstrated that both invertebrate and algal assemblages exhibited similar timing and nature of ecological responses. Midges were quantified by their relative abundance, concentrations and an index of Chaoborus to chironomids, and all showed the greatest differences between the wet and dry periods. During the low lake-level period of the Medieval Climate Anomaly (MCA: AD 900 to 1400), profundal chironomids declined, shallow-water and mid-depth chironomids increased, chironomid-inferred lake level declined and the Chaoborus-to-chironomid index decreased. The coherence between multiple trophic levels provides strong evidence of lower lake levels in Gall Lake during the MCA.  相似文献   
104.
As part of the E-Flux project, we documented spatial variability and temporal changes in plankton community structure in a cold-core cyclonic eddy in the lee of the Hawaiian Islands. Cyclone Opal spanned 200 km in diameter, with sharply uplifted isopycnals (80–100 m relative to surrounding waters) and a strongly expressed deep chlorophyll a maximum (DCM) in its central core region of 40 km diameter. Microscopic and flow cytometric analyses of samples from across the eddy revealed dramatic transitions in phytoplankton community structure, reflecting Opal's well-developed physical structure. Upper mixed-layer populations in the eddy resembled those outside the eddy and were dominated by picophytoplankton. In contrast, the DCM was composed of large chain-forming diatoms dominated by Chaetoceros and Rhizosolenia spp. Diatoms attained unprecedented levels of biomass (nearly 90 μg C l−1) in the center of the eddy, accounting for 85% of photosynthetic biomass. Protozoan grazers displayed two- to three-fold higher biomass levels in the eddy center as well. We also found a distinct and persistent layer of senescent diatom cells overlying healthy populations, often separated by less than 10 m, indicating that we were sampling a bloom in a state of decline. Time-series sampling over 8 days showed a successional shift in community structure within the central diatom bloom, from the unexpected large chain-forming species to smaller forms more typical of the subtropical North Pacific. The diatom bloom of Cyclone Opal was a unique, and possibly extreme, example of biological response to physical forcing in the North Pacific subtropical gyre, and its detailed study may therefore help to improve our predictive understanding of environmental controls on plankton community structure.  相似文献   
105.
Stephanodiscus niagarae is frequently reported from late Pleistocene (>10,000 yr BP) sediments in central Mexico, with lower abundances through the Holocene. Its presence in Holocene and modern environments in central Mexico was not well documented until our study, where we report on three populations of S. niagarae, one middle Holocene population with particularly high abundance from the Upper Lerma Basin, and two modern sites, Valle de Bravo and Santa Elena. The three sites are located in the same geographical area, in the State of Mexico. The fossil material dates to ca. 6600–4900 yr BP, with S. niagarae reaching up to 90% of the diatom counts. Stephanodiscus niagarae is present in association with Fragilaria pinnata, F. brevistriata, and Aulacoseira granulata. In Valle de Bravo (ca. 30 m deep) S. niagarae is present in very low numbers in water column and surface sediments samples (<1%); the diatom assemblage is dominated by Fragilaria crotonensis in association with A. granulata, A. granulata var. curvata and Cyclotella ocellata. In Santa Elena, a shallow, intermittent irrigation channel, S. niagarae is the second most abundant alga; the diatom assemblage is dominated by S. niagarae in association with A. granulata, A. granulata var. curvata and F. crotonensis. Both modern sites show a trend to eutrophy and these diatom assemblages are taken as indicative of this trend. It is suggested researchers should be cautions when the presence of S. niagarae in sedimentary records is taken as indicative of deep waters conditions, as the present data show that this species can thrive in rather shallow environments in Mexico.  相似文献   
106.
Foraminifera and diatoms preserved in salt-marsh sediments have been used to produce high-resolution records of Holocene relative sea-level (RSL) change. To determine which of these microfossil groups is most appropriate for this purpose we investigated their relative utility from salt marshes in North Carolina, USA. Regional-scale transfer functions were developed using foraminifera, diatoms and a combination of both (multi-proxy) from three salt marshes (Oregon Inlet, Currituck Barrier Island and Pea Island). We evaluated each approach on the basis of transfer-function performance. Foraminifera, diatoms and multi-proxy-based transfer functions all demonstrated a strong relationship between observed and predicted elevations (r2jack > 0.74 and RMSEP < 0.05 m), suggesting that they have equal utility. Application of the transfer functions to a fossil core from Salvo to reconstruct former sea levels enabled us to consider relative utility in light of ‘paleo-performance’. Fossil foraminifera had strong modern analogues, whilst diatoms had poor modern analogues making them unreliable. This result reflects the high diversity and site-specific distribution of modern diatoms. Consequently, we used foraminifera to reconstruct RSL change for the period since ∼ AD 1800 using a 210Pb- and 14C-based chronology, and we were able to reconcile this with tide-gauge records.  相似文献   
107.
The return of hundreds to millions of adult sockeye salmon (Oncorhynchus nerka), which have returned from the ocean to their natal nursery lake environment to spawn, can result in significant nutrient loading. By analyzing sedimentary diatom assemblages from nursery lakes, we demonstrated that a salmon-derived nutrient signal could be traced over time and be used to infer past sockeye salmon population dynamics. We conducted a 2,200 year paleolimnological study of two Alaskan sockeye salmon nursery lakes, Karluk and Frazer lakes. The two lakes are very similar, except that sockeye salmon were only introduced into Frazer Lake in 1951 (first spawners returned in 1956). In both lakes we found a strong correspondence between diatom assemblages and the number of adult salmon spawners recorded in the historical data (40 and 70 years for Frazer and Karluk lakes, respectively). Given this robust relationship, we then used our analyses of diatoms from Karluk Lake over the past 2,200 years to gain insight into salmon-derived nutrient loading changes (which are directly related to the number of sockeye salmon spawners). The diatom record from Karluk Lake recorded dramatic species changes on both decadal and century timescales, and was strongly correlated with an independent indicator of sockeye salmon abundances, 15N. Together, these data suggest pronounced variability in sockeye salmon abundances at Karluk Lake over the past 2,200 years. The direct impacts of regional environmental variability were not likely responsible for the patterns apparent in Karluk Lake, as the diatom and 15N profiles from Frazer Lake were relatively stable prior to the introduction of sockeye salmon. Application of total phosphorus transfer functions to the Karluk and Frazer lakes' diatom records revealed that sockeye salmon carcasses substantially increased the trophic status in these lakes, which has important implications for the health of juvenile salmon that rear in nursery lakes. Overall, this paper illustrates the potential use of diatoms in reconstructing past sockeye salmon population dynamics, which in turn can lead to a greater understanding of the mechanisms influencing abundances of sockeye salmon.  相似文献   
108.
Formation of Lake Long, King George Island, Antarctica started about 4,000 years B.P., after which the diatom community changed in response to environmental shifts driven by climatic oscillations (warm/wet and cool/dry). Successive sequences of diatoms in a 7.5-m drill core were divided into 11 assemblage zones by cluster analysis. The most obvious change was an alternation of major dominants, Achnanthes minutissima, Fragilaria alpestris and Fragilaria pinnata v. antarctica according to the climatic oscillations in the late Holocene. Variations in diatom assemblages clearly reflect two warm periods, a single cool period, and three transition periods. The recent warm period (zones 2 and 1) has persisted for approximately 450 years, perhaps sufficiently long to suggest the imminent onset of a new transition period. A recent high TOC (total organic carbon) value in the core reflects a warm period in Antarctica during the late Holocene.  相似文献   
109.
The seasonal dynamics of nutrient ratios and abundance of phytoplankton cells from the central (CB) and western (WB) Bay of Bengal (BOB) were studied during the fall intermonsoon (FIM; September-October 2002) and spring intermonsoon (SpIM; April-May 2003). The nutrient molar ratios of macronutrients such as nitrate to phosphate (N:P), nitrate to silicate (N:Si) and silicate to phosphate (Si:P) in the top 120m were calculated for both FIM and SpIM. During both the seasons, the N:P ratios along the CB and WB were lower than 16, indicating nitrate deficiency. Whereas, along both transects the N:Si ratio was <1 and Si:P >3 in the top 20 and 40m during FIM and SpIM, respectively, indicating Si enrichment. Relatively greater nutrient concentrations along the WB than the CB appear to contribute to higher phytoplankton abundance. The preponderance of diatoms in the Bay could be attributed to rapid utilization of available nutrients in particular during FIM thus resulting in low N:Si ratios in the water column. Among diatoms, pennales were predominantly controlled by nutrients and their ratios. While, apart from nutrients, physical stratification, light and eddies also seem to influence the distribution and abundance of centrales.  相似文献   
110.
We analyzed pollen, spores, diatoms, organic carbon, nitrogen, and δ13C of organic matter in lake sediments to infer climate changes and reconstruct the paleo-environment of subtropical Taiwan over the past ∼1300 years. A 31.5-cm sediment core that represents deposition from 650 AD to present was taken from a mountain lake, Duck Pond, located 760 m a.s.l. We differentiated five zones using cluster analysis on pollen and spore assemblages. Fluctuations in the relative abundances of arboreal taxa, herbaceous plants, and ferns reflect changes in the relative amounts of woody versus grassland vegetation. Such shifts are associated with changes in temperature and humidity and are consistent with climatic periods reported for the temperate region of central China. Climate changes inferred from the pollen assemblages are also correlated well with changes in the ratios of fern spores to pollen, with organic carbon to nitrogen, and with the δ13C values in the sediments. Fluctuations in these data throughout the entire core were in good agreement with the changes in pH inferred from diatom assemblages. This study provides evidence of climate change in northern Taiwan over the past 1.3 millennia, assuming that climate can be inferred from the ratio of arboreal to non-arboreal pollen and from the pH of the aquatic environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号