首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7160篇
  免费   1209篇
  国内免费   1132篇
测绘学   141篇
大气科学   619篇
地球物理   2577篇
地质学   3779篇
海洋学   877篇
天文学   60篇
综合类   301篇
自然地理   1147篇
  2024年   37篇
  2023年   114篇
  2022年   197篇
  2021年   270篇
  2020年   283篇
  2019年   278篇
  2018年   256篇
  2017年   291篇
  2016年   278篇
  2015年   288篇
  2014年   425篇
  2013年   552篇
  2012年   344篇
  2011年   401篇
  2010年   376篇
  2009年   451篇
  2008年   529篇
  2007年   440篇
  2006年   468篇
  2005年   345篇
  2004年   325篇
  2003年   292篇
  2002年   276篇
  2001年   249篇
  2000年   229篇
  1999年   231篇
  1998年   194篇
  1997年   172篇
  1996年   145篇
  1995年   122篇
  1994年   109篇
  1993年   108篇
  1992年   93篇
  1991年   70篇
  1990年   69篇
  1989年   43篇
  1988年   44篇
  1987年   18篇
  1986年   15篇
  1985年   12篇
  1984年   9篇
  1983年   8篇
  1982年   5篇
  1981年   6篇
  1980年   7篇
  1978年   16篇
  1977年   5篇
  1976年   2篇
  1972年   1篇
  1954年   3篇
排序方式: 共有9501条查询结果,搜索用时 15 毫秒
51.
空心块体具有良好的阻水和促淤功能,近年来被广泛用于生态修复工程。本文结合水槽试验及Flow-3D数值模拟,分析了开敞型和半封闭型空心块体的阻水效应和泥沙淤积特性。结果表明:空心块体的开孔率对内部水流流速、紊动强度起主导作用,开孔率较小的半开敞型空心块体减速、制紊效果更强;开敞型和半封闭型空心块体近底层悬沙浓度分别增大56%和75%,两者均有利于促进泥沙在块体内部淤积,近底层水流紊动越强,泥沙淤积形态差异越大;空心块体所营造的低流速、泥沙微淤、内外连通的水沙环境是大型底栖生物的生境需求,半封闭型空心块体内部的低紊动水流结构更有利于大型底栖生物的栖息、繁衍。  相似文献   
52.
The mitochondrial DNA (mtDNA) control region was sequenced to examine the genetic variability and gene flow of juvenile Siganus spinus and S. guttatus. In total, 461 nucleotide sequences were obtained from 69 specimens of juvenile S. spinus from Okinawa Island and Ishigaki Island, in which 17 variable sites and 22 haplotypes were identified. Haplotype diversity (h) was high (0.9244 in Okinawa and 0.8984 in Ishigaki), whereas nucleotide diversity (π) was low (0.0063 in Okinawa and 0.0059 in Ishigaki). The two populations were not genetically distinct. Siganus guttatus, which do not form large schools at recruitment, in contrast S. spinus, were also analyzed by studying 152 individuals collected off Okinawa Island, Miyako Island, and Ishigaki Island. Of 476 nucleotide sequences, 50 were variable, and 42 haplotypes were identified. Genetic variability values were high (h = 0.8766 and π = 0.0151 in Okinawa; h = 0.9640 and π = 0.0192 in Miyako; h = 0.9161 and π = 0.0199 in Ishigaki). The Okinawa population was genetically isolated from the Miyako and Ishigaki populations. As a result, genetic diversity was high for each of these siganid populations despite their being target species for fisheries; however, the degree of inter-population gene flow was higher for S. spinus than S. guttatus, suggesting that these species exhibit different dispersal strategies.  相似文献   
53.
The highly accurate Boussinesq-type equations of Madsen et al. (Madsen, P.A., Bingham, H.B., Schäffer, H.A., 2003. Boussinesq-type formulations for fully nonlinear and extremely dispersive water waves: Derivation and analysis. Proc. R. Soc. Lond. A 459, 1075–1104; Madsen, P.A., Fuhrman, D.R., Wang, B., 2006. A Boussinesq-type method for fully nonlinear waves interacting with a rapidly varying bathymetry. Coast. Eng. 53, 487–504); Jamois et al. (Jamois, E., Fuhrman, D.R., Bingham, H.B., Molin, B., 2006. Wave-structure interactions and nonlinear wave processes on the weather side of reflective structures. Coast. Eng. 53, 929–945) are re-derived in a more general framework which establishes the correct relationship between the model in a velocity formulation and a velocity potential formulation. Although most work with this model has used the velocity formulation, the potential formulation is of interest because it reduces the computational effort by approximately a factor of two and facilitates a coupling to other potential flow solvers. A new shoaling enhancement operator is introduced to derive new models (in both formulations) with a velocity profile which is always consistent with the kinematic bottom boundary condition. The true behaviour of the velocity potential formulation with respect to linear shoaling is given for the first time, correcting errors made by Jamois et al. (Jamois, E., Fuhrman, D.R., Bingham, H.B., Molin, B., 2006. Wave-structure interactions and nonlinear wave processes on the weather side of reflective structures. Coast. Eng. 53, 929–945). An exact infinite series solution for the potential is obtained via a Taylor expansion about an arbitrary vertical position zˆ. For practical implementation however, the solution is expanded based on a slow variation of zˆ and terms are retained to first-order. With shoaling enhancement, the new models obtain a comparable accuracy in linear shoaling to the original velocity formulation. General consistency relations are also derived which are convenient for verifying that the differential operators satisfy a potential flow and/or conserve mass up to the order of truncation of the model. The performance of the new formulation is validated using computations of linear and nonlinear shoaling problems. The behaviour on a rapidly varying bathymetry is also checked using linear wave reflection from a shelf and Bragg scattering from an undulating bottom. Although the new models perform equally well for Bragg scattering they fail earlier than the existing model for reflection/transmission problems in very deep water.  相似文献   
54.
The bottom friction beneath random waves is predicted taking into account the effect of seepage flow. This is achieved by using wave friction factors for rough turbulent, smooth turbulent and laminar flow valid for regular waves together with a modified Shields parameter which includes the effect of seepage flow. Examples using data typical to field conditions are included to illustrate the approach. The analytical results can be used to make assessment of seepage effects on the bottom friction based on available wave statistics. Generally, it is recommended that a stochastic approach should be used rather than using the rms values in an otherwise deterministic approach.  相似文献   
55.
Abstract

Pipes buried in soft ground can be damaged due to the vertical and lateral movement of the ground during the construction of the embankment. To investigate such a movement of the soft ground, full-scale tests using embankment piles and stabilizing piles were conducted for 70?days. A pile-supported embankment has been used to reduce the deformation of soft ground by transferring the embankment load through piles to the firm layer below the soft ground, whereas stabilizing piles have been employed to resist the lateral earth pressure that is induced in soft ground by embankment loads. The Coupling Area (CA), which was defined as the quantitative index to determine the resistance effect of both settlement and lateral flow of the soft ground when the embankment was reinforced, is adapted. The analysis results of the CA indicate that the piled embankment was more effective for preventing the damage to buried pipe installed near the embankment, while the stabilizing piles had almost the same effect as the piled embankment when the pipe was buried far away from the embankment.  相似文献   
56.
57.
This article presents an approach for estimating land subsidence due to withdrawal of groundwater. The proposed method calculates the groundwater seepage in 3-D-condition and calculates the land subsidence one-dimensionally. The governing equation on groundwater seepage is based on the three-dimensional mass conservation law and the principle of effective stress. The land subsidence calculation method is derived based on the following assumptions: (1) displacements occur only in the vertical direction, and (2) in vertical direction the total stresses do not change. The governing equation is solved by numerical method, i.e., finite element method (FEM) in spatial discretization and finite difference method (FDM) in time series discretization. In FEM Galerkin method is adopted and in FDM, lumped matrix method is employed. The proposed method is calibrated via analyzing 1-D consolidation problem and the results are compared with those from Terzaghi's one-dimensional consolidation theory and oedometer test. The proposed method is employed to analyze the consolidation of a soft layer due to withdrawal of groundwater from an aquifer under it. Moreover, this method is also applied to a field case of land subsidence due to groundwater pumping in a gas production field in Japan. The analytical results are compared with the field observed data. The results show that this approach simulates the field case well.  相似文献   
58.
Recolonisation of previously dry channels by stream invertebrates was studied in the Rakaia River during winter 1981 and summer 1982. The winter experiment continued for 42 days, with stable low flows, whereas the summer experiment was characterised by fluctuating large flows which caused it to be abandoned after 27 days. The fauna was dominated numerically by Chironomidae, a leptophlebiid mayfly (Deleatidium), and oligochaetes during the winter, and by Deleatidium alone during the summer. Recolonisation was considered complete after 33 days in winter and 15 days in summer. Flow fluctuations were the main factor affecting colonisation rates, and it was assumed that drift was the main source of colonising animals. Small freshes during low‐flow periods in winter resulted in a rapid increase in total density of invertebrates and number of taxa present and also affected the population structure of Deleatidium larvae in colonisation baskets. Before these freshes numbers had increased steadily over a 27 day period. In summer large floods during high flow periods initially decreased benthic invertebrate numbers in samples but numbers increased rapidly once the flood had passed. This appears to be the first study of its kind on a large unstable river system.  相似文献   
59.
Three-dimensional liquid sloshing in a tank with baffles   总被引:1,自引:0,他引:1  
A numerical model has been developed to study three-dimensional (3D) liquid sloshing in a tank with baffles. The numerical model solves the spatially averaged Navier-Stokes equations, which are constructed on a non-inertial reference frame having six degree-of-freedom (DOF) of motions. The large-eddy-simulation (LES) approach is employed to model turbulence by using the Smagorinsky sub-grid scale (SGS) closure model. The two-step projection method is employed in the numerical solutions, aided by the Bi-CGSTAB technique to solve the pressure Poisson equation for the filtered pressure field. The second-order accurate volume-of-fluid (VOF) method is used to track the distorted and broken free surface. The baffles in the tank are modeled by the concept of virtual boundary force (VBF) method. The numerical model is first validated against the available analytical solution and experimental data for two-dimensional (2D) liquid sloshing in a tank without baffles. The 2D liquid sloshing in tanks with baffles is then investigated. The numerical results are compared with other results from available literatures. Good agreement is obtained. Finally, the model is used to study 3D liquid sloshing in a tank with vertical baffles. The effect of the baffle is investigated and discussed.  相似文献   
60.
In this paper we describe a 3D control-volume finite-element method to solve numerically the coupled partial differential equations (PDEs) governing geological processes involved in the evolution of sedimentary basins. These processes include sediment deposition and deformation, hydrocarbon generation, multiphase fluid flow, and heat transfer in deforming porous media.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号