全文获取类型
收费全文 | 2670篇 |
免费 | 236篇 |
国内免费 | 229篇 |
专业分类
测绘学 | 260篇 |
大气科学 | 110篇 |
地球物理 | 148篇 |
地质学 | 1025篇 |
海洋学 | 205篇 |
天文学 | 4篇 |
综合类 | 222篇 |
自然地理 | 1161篇 |
出版年
2024年 | 7篇 |
2023年 | 22篇 |
2022年 | 70篇 |
2021年 | 91篇 |
2020年 | 87篇 |
2019年 | 87篇 |
2018年 | 76篇 |
2017年 | 94篇 |
2016年 | 83篇 |
2015年 | 89篇 |
2014年 | 102篇 |
2013年 | 141篇 |
2012年 | 106篇 |
2011年 | 127篇 |
2010年 | 121篇 |
2009年 | 104篇 |
2008年 | 128篇 |
2007年 | 134篇 |
2006年 | 178篇 |
2005年 | 157篇 |
2004年 | 154篇 |
2003年 | 145篇 |
2002年 | 142篇 |
2001年 | 142篇 |
2000年 | 138篇 |
1999年 | 130篇 |
1998年 | 100篇 |
1997年 | 73篇 |
1996年 | 38篇 |
1995年 | 26篇 |
1994年 | 20篇 |
1993年 | 9篇 |
1992年 | 6篇 |
1990年 | 2篇 |
1989年 | 2篇 |
1988年 | 1篇 |
1986年 | 1篇 |
1985年 | 1篇 |
1984年 | 1篇 |
排序方式: 共有3135条查询结果,搜索用时 28 毫秒
961.
利用1951 2000年南阳市降水资料和全国第二次水资源调查评价数据,分析了降水量的年变化趋势及其对水资源的影响,结果表明:南阳市年降水量呈减少趋势,受其影响,水资源量也呈减少趋势。南阳市人均水资源虽在河南省辖市中位居第三,但仍属缺水地区。因此,需要采取综合措施,建设节水型社会,促进经济发展与水资源的协调。 相似文献
962.
秦岭—祁连造山带印支-燕山期构造与大型-超大型矿床的形成关系 总被引:17,自引:0,他引:17
印支-燕山期构造-岩浆热液活动,对秦岭-祁连造山带的区域成矿控制与影响作用十分显著,主要表现在该期北东向构造-岩浆活动不仅控制了金等矿产的形成,而且使先期形成的铜,铅锌等矿产发生了较强烈的改造和富集作用,该期北东向构造带与先期的北西、近东西向构造或含矿层交汇叠加部位,是形成大型-超大型矿床的重要条件。文章对秦岭-祁连造山带印支-燕山期构造-岩浆活动带的发育特征及其对大型-超大型矿床的控制与影响等进行了初步分析与探讨,提出了本区新一轮矿产勘查研究对策与思路。 相似文献
963.
964.
地震灾害与经济可持发展刍议 总被引:1,自引:0,他引:1
地震灾害是经济可持续发展的重要制约因素,经济可持续发展能有效减轻地震灾害。本文论述了地震灾害对经济可持续发展的影响,提出了正确处理地震灾害与经济可持续发展的关系、提高减灾效率和促进经济可持续发展的措施。 相似文献
965.
966.
陕北能源化工基地煤炭生产可持续发展的地质与环境地质问题研究 总被引:1,自引:0,他引:1
陕北能源化工基地多种矿产富集,煤炭、石油、天然气、岩盐等矿产资源储量丰富,经过近20年的建设开发,已初步建成为中国重要的能源接续地和大型煤化工基地。但该区水资源短缺、生态环境脆弱的现状,相对资源开发增长速度较快的煤炭生产和转化来说,其环境压力巨大,暴露出的矿产地质与环境地质问题突出.已影响到基地建设的可持续发展。为此提出了如下应对措施:加强地质勘查工作,提高煤炭资源保障程度:加强多种矿产并存区的综合地质勘探、评价和规划,推进矿产资源的综合开发与利用;加强生产矿井的监督和管理,不断提高资源采收率;开展矿区水资源的勘察评价,加强水资源的规划和协调管理;深化《保水采煤技术研究》,推广实施矿井水及工业、生活污水的综合利用;建立健全防灾减灾体系建设,做好矿区地质灾害监测、评价及治理工作;加强矿区环境整治和生态保护工作;建立陕北能源化工基地煤炭资源、环境可持续发展的长效机制。 相似文献
967.
Journal of Geographical Sciences - Poverty is a key issue restricting rural sustainable development; concurrently, regional land degradation impedes agricultural development and rural... 相似文献
968.
Basement of the South China Sea Area: Tracing the Tethyan Realm 总被引:1,自引:0,他引:1
LIU Hailing an ZHENG Hongbo WANG Yanlin LIN Qiujin WU Chaohu ZHAO Meisong DU Yunkong 《《地质学报》英文版》2011,85(3):637-655
The basement of the South China Sea (SCS) and adjacent areas can be divided into six divisions (regions) – Paleozoic Erathem graben-faulted basement division in Beibu Gulf, Paleozoic Erathem strike-slip pull-apart in Yinggehai waters, Paleozoic Erathem faulted-depression in eastern Hainan, Paleozoic Erathem rifted in northern Xisha (Paracel), Paleozoic Erathem strike-slip extending in southern Xisha, and Paleozoic-Mesozoic Erathem extending in Nansha Islands (Spratly) waters. The Pre-Cenozoic basement in the SCS and Yunkai continental area are coeval within the Tethyan tectonic domain in the Pre-Cenozoic Period. They are formed on the background of the Paleo-Tethyan tectonic domain, and are important components of the Eastern Tethyan multi-island-ocean system. Three branches of the Eastern Paleo-Tethys tectonic domain, North Yunkai, North Hainan, and South Hainan sea basins, have evolved into the North Yunkai, North Hainan, and South Hainan suture zones, respectively. This shows a distinctive feature of localization for the Pre-Cenozoic basement. The Qiongnan (i.e. South Hainan) Suture Zone on the northern margin of the South China Sea can be considered the vestige of the principal ocean basin of Paleo-Tethys, and connected with the suture zone of the Longmucuo-Shuanghu belt–Bitu belt –Changning-Menglian-Bentong-Raub belt, the south extension of Bitu-Changning-Menglian–Ching Mai belt–Chanthaburi-Raub-Bentong belt on the west of South China Sea, and with the Lianhua-Taidong suture zone (a fault along the east side of Longitudinal Valley in Taiwan)–Hida LP/HT (low pressure-high temperature) metamorphic belt–Hida-marginal HP/LT metamorphic belt in southwestern Honshu of Japan, on the east of the South China Sea. The Qiongbei (North Hainan) suture zone may eastwards extended along the Wangwu-Wenjiao fault zone, and connects with the Lufeng-Dapu-Zhenghe-Shangyu (Lianhuashan) deep fault zone through the Pearl River Mouth Basin. The Meso-Tethys developed on the south of the South China Sea. The Nansha Trough may be considered the vestige of the northern shelf of the Meso-Tethys. The oceanic crust of the Meso-Tethys has southwards subducted along the subduction-collision-thrust southern margin of the Nansha Trough with a subduction-pole opposite to those of the Yarlung Zangbo-Mytkyina-Bago zone on the west of the South China Sea, and the Meso-Tethyan (e.g. Northern Chichibu Ocean of the Meso-Tethys) suture zone “Butsozo tectonic line” in the outer belt of the Jurassic-Early Cretaceous terrene group in southwest Japan, on the east of the South China Sea. 相似文献
969.
Colllin Lee 《地理学报(英文版)》1996,(2)
I.IntroductionTheuseofquantitative111odeIstodevelopUnderstanding,prePareforecastsandexplorepolicyoptionsinthecontextofurbanandroponaldevelpl11entremainsapopularaCtivlty,althouglrathermoresointheacadel11iccol11n1unitythanintl1epIanningprofession.However,thehistoryoftheapplicationoffon11aln1odelstopolicyproblemsdoesnotproducegreatconfidence.objeCtiveevaluationoftheuseofl11odelsinpolicyn1akingiscomplicatedbythefaCtthat,asafonl1ercolleagueoncesaid,con1puter111odeIsarelikecl1ildrenfmostpeopleten… 相似文献
970.
The internal structure and growth pattern of Tahiti reefs over the last 14 ka is reconstructed using sedimentological, morphological and palaeobiological data coupled with radiometric dates in drill cores through the modern barrier reef. Flooding of the volcaniclastic deposits or the karst surface of a Pleistocene reef started at ≈ 14 ka BP, and coral growth began shortly after inundation. The sequence in the Tahiti barrier-reef edge has formed predominantly through long-term keep-up growth controlled by stable environmental conditions, while the adjacent backreef deposits did not start to accumulate before sea-level stabilization, around 6 ka. The dominance of Porites communities and the coeval occurrence of branching gracile Lithophyllum in the lowermost part of the postglacial reef sequence (14–11 ka) suggest the prevalence of uniformly moderate- to low-energy conditions and/or growth in slightly deeper waters all over the drilled area during the early reef stages. During the last 11 ka, the reef frameworks developed in a high-energy environment, at maximum water depths of 5–6 m, and were dominated by an Acropora robusta/danai–Hydrolithon onkodes association; the local interlayering of other coralgal assemblages (dominated by tabular Acropora or domal Porites ) reflects distinct diversification stages, resulting either from the palaeotopographic control of the substrate or from slight and episodic environmental changes. 相似文献