首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   9篇
  国内免费   9篇
大气科学   5篇
地球物理   6篇
地质学   4篇
海洋学   18篇
综合类   1篇
自然地理   13篇
  2021年   2篇
  2020年   1篇
  2017年   1篇
  2015年   3篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2008年   4篇
  2007年   6篇
  2006年   4篇
  2004年   2篇
  2003年   4篇
  2002年   5篇
  2001年   2篇
  1996年   1篇
  1995年   1篇
  1988年   1篇
排序方式: 共有47条查询结果,搜索用时 15 毫秒
41.
北极环极边界流研究及其主要科学问题   总被引:8,自引:1,他引:7       下载免费PDF全文
赵进平  史久新 《极地研究》2004,16(3):159-170
北极环极边界流是新近揭示的重要海洋现象 ,是对北冰洋海洋环流长期研究结果综合得到的概念。在本文中 ,详细介绍了北极环极边界流的主要结构和水团特征 ,论述了研究北极环极边界流的意义和前景 ,深入探讨了北极环极边界流面对的科学问题 ,指出了解决这些问题的关键科研工作。文章指出 ,从整体上研究北极环极边界流是非常重要的 ,需要全面考察北冰洋的质量和能量平衡、深层水通风过程以及水体的混合过程。在进一步的研究工作中需要更多的有针对性的现场观测、开展多学科协作研究。数值模拟仍然是北极环极边界流的重要研究手段 ,需要改善数值模式 ,提高数值模拟的质量。  相似文献   
42.
Geomagnetic storms are a natural hazard tohuman health in the Auroral Belt of the Circumpolar.Geomagnetic disturbances in space, and the associated short-term variations in the atmosphere and the geophysical environment,provoke a disturbance of nervous and cardiovascular systems in the human body. The Heart Rate Variability (HRV) method providesa momentary response of human organisms toshort-term geophysical perturbations related to the Polar Aurora. A pilot project was performed in the Murmansk region in 1997–1999 with a contemporaneous series of records for both HRV in a test group of local inhabitants and the variations of natural geomagnetic fields.A correlation between geomagnetic disturbances and heart rate was calculated and different reactions of people on geophysical impact were shown. The special group of `Aurora Disturbance Sensitive People' (ADSP) was revealed. Aninternational study, aimed atevaluation of the impact on human health due to exposure of northern populations to the geophysical risk factor (GRF) in the Circumpolar areas located under the Aurora Belt, is needed.  相似文献   
43.
Possible source of the antarctic bottom water in the Prydz Bay Region   总被引:4,自引:0,他引:4  
It has been inferred that the Prydz Bay region is one of the source regions of Antarctic Bottom Water (AABW) based on rather indirect evidence. In order to examine this inference, we investigate the hydrographic condition of the bay based mainly on XCTD data obtained during the Japanese Whale Research Program in the Antarctic (JARPA). The JARPA hydrographic data reveal Circumpolar Deep Water (CDW), which is a salty, warm water mass approaching the shelf break, and capture Modified CDW (MCDW) intruding into the shelf water. AABW production requires mixing of CDW and cold shelf water saltier than 34.6 psu, which is a saltier type of Low Salinity Shelf Water (LSSW). Saltier LSSW is observed near the bottom over the shelf, being mixed with MCDW. We further identify saltier LSSW near the shelf break. This saltier LSSW appears close enough to unmodified CDW to be mixed with it over the continental slope, indicating a possible source of AABW in Prydz Bay.  相似文献   
44.
Large-scale zonal flow driven across submarine topography establishes standing Rossby waves. In the presence of stratification, the wave pattern can be represented by barotropic and baroclinic Rossby waves of mixed planetary topographic nature, which are locked to the topography. In the balance of momentum, the wave pattern manifests itself as topographic formstress. This wave-induced formstress has the net effect of braking the flow and reducing the zonal transport. Locally, it may lead to acceleration, and the parts induced by the barotropic and baroclinic waves may have opposing effects. This flow regime occurs in the circumpolar flow around Antarctica. The different roles that the wave-induced formstress plays in homogeneous and stratified flows through a zonal channel are analyzed with the BARBI (BARotropic-Baroclinic-Interaction ocean model, Olbers and Eden, J Phys Oceanogr 33:2719–2737, 2003) model. It is used in complete form and in a low-order version to clarify the different regimes. It is shown that the barotropic formstress arises by topographic locking due to viscous friction and the baroclinic one due to eddy-induced density advection. For the sinusoidal topography used in this study, the transport obeys a law in which friction and wave-induced formstress act as additive resistances, and windstress, the effect of Ekman pumping on the density stratification, and the buoyancy forcing (diapycnal mixing of the stratified water column) of the potential energy stored in the stratification act as additive forcing functions. The dependence of the resistance on the system parameters (lateral viscosity ε, lateral diffusivity κ of eddy density advection, Rossby radius λ, and topography height δ) as well as the dependence of transport on the forcing functions are determined. While the current intensity in a channel with homogeneous density decreases from the viscous flat bottom case in an inverse quadratic law ~δ –2 with increasing topography height and always depends on ε, a stratified system runs into a saturated state in which the transport becomes independent of δ and ε and is determined by the density diffusivity κ rather than the viscosity: κ/λ 2 acts as a vertical eddy viscosity, and the transport is λ 2/κ times the applied forcing. Critical values for the topographic heights in these regimes are identified.  相似文献   
45.
Galactic cosmic rays (GCRs) altered by solar wind are traditionally regarded as the most plausible agent of solar activity influence on the Earth's atmosphere. However, it is well known that severe reductions in the GCRs flux, known as Forbush decreases (FDs), are caused by solar wind of high speed and density, which sweeps away the GCRs on its way. Since the FD beginnings are registered at the Earth's orbit simultaneously with dramatic disturbances in the solar wind, the atmospheric effects, assigned to FDs, can be, in reality, the results of the solar wind influence on the atmospheric processes. This paper presents a summary of the experimental results demonstrating the strong influence of the interplanetary electric field on atmospheric processes in central Antarctica, where the large-scale system of vertical circulation is formed during winter seasons. The influence is realized through acceleration of the air masses, descending into the lower atmosphere from the troposphere, and the formation of cloudiness above the Antarctic Ridge, where the descending air masses enter the surface layer. The acceleration is followed by a sharp increase of the atmospheric pressure near-pole region, which gives rise to the katabatic wind strengthening above the entire Antarctica. The cloudiness formation results in the sudden warmings in the surface atmosphere, since the cloud layer efficiently backscatters the long wavelength radiation from the ice sheet, but does not affect the adiabatic warming process of the descending tropospheric air masses. When the drainage flow strengthening the circumpolar vortex around the periphery of the Antarctic continent decays, the surface easterlies typical of the coast stations during the winter season are replaced by southerlies and the cold Antarctic air masses flow out to the Southern ocean.  相似文献   
46.
By comparing the oxygen isotopic temperatures recorded by many shallow ice cores from the coastal regions of Antarctica, this paper presents the special characteristics of the temperature variations over the Antarctic coastal regions in the past 50 years, 150 years and 250 years. In the past 50 years, the isotopic temperatures recorded in the ice cores over different sites on the Antarctic coastal regions differ greatly. For instance, although increasing isotopic temperatures have been reported for many sites studied, many sites show decreasing trends, the regional regularity in temperature variations is still insignificant. In the past 150 years, the isotopic temperature trends in the coastal regions of Antarctica show an alternate-distributing pattern. In the past 250 years, all the ice cores from the coastal regions of Antarctica have recorded the so-called Little Ice Age (LIA). The above-mentioned spatial characteristics of the temperature variations over the Antarctic coastal regions are likely to reflect the impacts of the unique Southern Hemisphere atmospheric circulation, the Antarctic Circumpolar Wave (ACW) and the special terrain (such as the large drainage basins) on the coastal regions of Antarctica. Furthermore, the impacting intensity of the unique Southern Hemisphere atmospheric circulation, the Antarctic Circumpolar Wave and the special terrain differs in terms of the temporal scale of the temperature change.  相似文献   
47.
High-resolution autonomous glider data (including temperature, salinity, fluorescence, and optical backscatter) collected during the 2010–2011 austral summer identified variations in phytoplankton biomass along two glider sections near 76°40′S. Sea surface temperatures were warmer during the latter, westward section, while mixed layer depths were deeper. Substantial quantities of Modified Circumpolar Deep Water, identified by neutral density criteria, were located within both sections. Chlorophyll (Chl) concentrations computed from fluorescence exhibited daily quenching near the surface, and deep chlorophyll concentrations at 200 m became periodically elevated, suggesting substantial export on small space and time scales. The concentrations of particulate organic carbon (POC) computed from backscatter increased abruptly during the latter, westward section, concurrent with a decrease in chlorophyll. These higher POC:Chl ratios were not strongly correlated with presence of MCDW or with shallower mixed layer depths, but were strongly associated with higher surface temperatures and wind speed. The observed POC:Chl increase suggests a marked spatial and temporal transition between a Phaeocystis antarctica-dominated assemblage characterized by modest POC:Chl ratios to a diatom-dominated assemblage. Finally, a subsampling analysis highlights the capability of high-resolution glider data to resolve these biological/physical parameter correlations that are not discernible from lower frequency data typical of traditional cruise stations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号