首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   212篇
  免费   14篇
  国内免费   7篇
测绘学   3篇
大气科学   13篇
地球物理   56篇
地质学   104篇
海洋学   12篇
天文学   3篇
综合类   3篇
自然地理   39篇
  2022年   1篇
  2021年   3篇
  2020年   8篇
  2019年   3篇
  2018年   5篇
  2017年   3篇
  2016年   12篇
  2015年   8篇
  2014年   6篇
  2013年   19篇
  2012年   6篇
  2011年   6篇
  2010年   7篇
  2009年   20篇
  2008年   16篇
  2007年   12篇
  2006年   17篇
  2005年   12篇
  2004年   12篇
  2003年   13篇
  2002年   7篇
  2001年   4篇
  2000年   7篇
  1999年   6篇
  1997年   4篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
  1977年   1篇
排序方式: 共有233条查询结果,搜索用时 437 毫秒
161.
The Angélica copper deposit is situated at the southernmost sector of the Jurassic Tocopilla plutonic complex in the North Chilean Coastal Cordillera. This deposit occurs in monzonitic to monzodioritic rocks, and has platelike orebodies with no appreciable hydrothermal alteration nor sulfide mineralization. The mineralized zones are located in the western side of the two main normal faults with NE and NW orientations, and are characterized principally by impregnation of supergene copper products of atacamite and minor amounts of chrysocolla, lavendulan and “black copper”. Generally, chrysocolla is more abundant at a distal NE sector of the deposit. The black copper is Cu‐Fe‐Mn‐Si‐Cl‐rich multimineral aggregates composed of atacamite with minor amounts of quartz, pseudomalachite, dioptase, neotocite, gypsum, paratacamite and melanothallite, and its surface exhibits nanometer‐sized cylindrical morphologies. All these characteristics suggest an exotic origin for the Angélica copper deposit. A few vein‐type copper deposits situated at the southwestern sector along the NE‐oriented fault are inferred as the possible source of the Angélica copper deposit.  相似文献   
162.
A detailed dispersion analysis of Rayleigh waves generated by local earthquakes and occasionally by blasts that occurred in southern Spain, was undertaken to obtain the shear-wave velocity structure of the region at shallow depth. Our database includes seismograms generated by 35 seismic events that were recorded by 15 single-component short-period stations from 1990 to 1995. All these events have focal depths less than 10 km and body-wave magnitudes between 3.0 and 4.0, and they were all recorded at distances between 40 and 300 km from the epicentre. We analysed a total of 90 source-station Rayleigh-wave paths. The collected data were processed by standard digital filtering techniques to obtain Rayleigh-wave group-velocity dispersion measurements. The path-averaged group velocities vary from 1.12 to 2.25 km/s within the 1.0-6.0 s period interval. Then, using a stochastic inversion approach we obtained 1-D shear-wave velocity–depth models across the study area, which were resolved to a depth of circa 5 km. The inverted shear-wave velocities range approximately between 1.0 and 3.8 km/s with a standard deviation range of 0.05–0.16 km/s, and show significant variations from region to region. These results were combined to produce 3-D images via volumetric modelling and data visualization. We present images that show different shear velocity patterns for the Betic Cordillera. Looking at the velocity distribution at various depths and at vertical sections, we discuss of the study area in terms of subsurface structure and S-wave velocity distribution (low velocity channels, basement depth, etc.) at very shallow depths (0–5 km). Our results characterize the region sufficiently and lead to a correlation of shear-wave velocity with the different geological units features.  相似文献   
163.
On 28–30 July 2000, an extreme melt event was observed at John Evans Glacier (JEG), Ellesmere Island (79° 40′N, 74° 00′W). Hourly melt rates during this event fell in the upper 4% of the distribution of melt rates observed at the site during the period 1996–2000. Synoptic conditions during the event resulted in strong east‐to‐west flow over the northern sector of the Greenland Ice Sheet, with descending flow on the northwest side reaching Ellesmere Island. On JEG, wind speeds during the event averaged 8·1 m s?1 at 1183 m a.s.l., with hourly mean wind speeds peaking at 11·6 m s?1. Air temperatures reached 8°C, and rates of surface lowering measured by an ultrasonic depth gauge averaged 56 mm day?1. Calculations with an energy balance model suggest that increased turbulent fluxes contributed to melt enhancement at all elevations on the glacier, while snow albedo feedback resulted in increased melting due to net radiation at higher elevations. The event was responsible for 30% of total summer melt at 1183 m a.s.l. and 15% at 850 m a.s.l. Conditions similar to those during the event occurred on only 0·1% of days in the period 1948–2000, but 61% of events occurred in the summer months and there was an apparent clustering of events in the 1950s and 1980s. Such events have the potential to impact significantly on runoff, mass balance and drainage system development at high Arctic glaciers, and changes in their incidence could play a role in determining how high Arctic glaciers respond to climate change and variability. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
164.
Tree rings were used to reconstruct mass balance for Peyto Glacier in the Canadian Rocky Mountains from A.D. 1673 to 1994. Summer balance was reconstructed from tree-ring estimates of summer temperature and precipitation in the Canadian Rockies. Winter balance was derived from tree-ring data from sites bordering the Gulf of Alaska and in western British Columbia. The models for winter and summer balance each explain over 40% of the variance in the appropriate mass-balance series. Over the period 1966-1994 the correlation between the reconstructed and measured net balances is 0.71. Strong positive mass balances are reconstructed for 1695-1720 and 1810-1825, when higher winter precipitation coincided with reduced ablation. Periods of reconstructed positive mass balance precede construction of terminal moraines throughout the Canadian Rockies ca. 1700-1725 and 1825-1850. Positive mass balances in the period 1845-1880 also correspond to intervals of glacier readvance. Mass balances were generally negative between 1760 and 1805. From 1673 to 1883 the mean annual net balance was +70 mm water equivalent per year (w.e./yr.), but it averaged −317 mm w.e./yr from 1884 to 1994. This reconstructed mass balance history provides a continuous record of glacier change that appears regionally representative and consistent with moraine and other proxy climate records.  相似文献   
165.
The Bajo Segura Basin is located in the eastern Betic Cordillera, at present connected with the Mediterranean Sea to the east. It has a complete stratigraphic record from the Tortonian to the Quaternary, which has been separated into six units bounded by unconformities. This paper is concerned with the northern edge of the basin, controlled by a major strike–slip fault (the Crevillente Fault Zone, CFZ), where the most complete stratigraphic successions are found. The results obtained (summarised below) are based on an integrated analysis of the sedimentary evolution and the subsidence-uplift movements. Unit I (Early Tortonian) is transgressive on the basin basement and is represented by ramp-type platform facies, organised in a shallowing-upward sequence related to tectonic uplift during the first stages of movement along the CFZ. Unit II (lower Late Tortonian) consists of shallow platform facies at bottom and pelagic basin facies at top, forming a deepening-upward sequence associated with tectonic subsidence due to sinistral motion along the CFZ. Unit III (middle Late Tortonian) is made up of exotic turbiditic facies related to a stage of uplift and erosion of the southern edge of the basin. Unit IV (upper Late Tortonian) consists of pelagic basin facies at bottom and shallow platform facies at top, defining a shallowing-upward sequence related to tectonic uplift during continued sinistral movement on the basin-bounding fault. Units V (latest Tortonian–Messinian) and VI (Pliocene–Pleistocene p.p.) consist of shallowing-upward sequences deposited during folding and uplift of the northern margin of the basin. No definitive evidence of any major eustatic sea-level fall, associated with the ‘Messinian salinity crisis’, has been recorded in the stratigraphic sections studied.  相似文献   
166.
167.
Abstract Layer-parallel (i.e. parallel to foliation or bedding) vein formation in the graywackes and pelites of the Quetico Metasedimentary Belt occurred during synchronous prograde metamorphism and regional (D2) compression. In a traverse across metasediments which change in metamorphic grade from greenschist to upper amphibolite (migmatite) facies, layer-parallel veins show the following trends: (1) an increase in thickness and internal complexity, the latter due to successive boudinage; (2) low-grade veins are parallel to planes of anisotropy due to the original sedimentary fabric of the host rocks, but at higher grades other sites are also used and (3) a systematic increase in plagioclase/quartz ratio in the veins towards higher grade, adjacent mafic selvedges first exhibit quartz depletion then, in the amphibolite facies, plagioclase depletion. Mineralogical zoning is often preserved in a single vein, older parts are more quartz-rich than younger. Mass balance calculations and whole-rock geochemistry based on veins, mafic selvedges and country rock are consistent with a closedsystem subsolidus segregation origin. The layerparallel veins are syntectonic, and migration of the mobile components required to form their mineralogy is a stress-induced mass transfer. The source of these components appears to be dominantly pressure solution of the same minerals in the host rocks, although metamorphic reactions may also have contributed. Veins nucleated first at those sites where initial sedimentary heterogeneites, such as fine-scale graded bedding, provided gradients of normal stress across grain boundaries, and hence of chemical potential, necessary to drive the subsolidus segregation process. The earliest veins are thus parallel to bedding. Later, nucleation of the veins could also occur along more randomly distributed sites within the metasediments, and these veins grew parallel to the schistosity rather than bedding, if the two were distinct. Once formed, the veins themselves, which are more competent than the surrounding rock, provide the stress heterogeneity required for their further growth. The increasing plagioclase/quartz ratio in the veins may be due to a temperature dependent increase in plagioclase component mobility relative to quartz. Alternatively, the increasing transfer distances for silica, resulting from prior quartz depletion in the inner parts of the mafic selvedge, may increase the relative mobility of plagioclase component.  相似文献   
168.
The development and evolution of the Tilcara alluvial fan, in the Quebrada de Humahuaca (Andean Eastern Cordillera, NW Argentina), has been analysed by using geomorphological mapping techniques, sedimentological characterisation of the deposits and OSL chronological methods. It is a complex segmented alluvial fan made up of five evolutionary stages (units Qf1, Qf2, Qf3, Qf4 and Qf5) developed under arid climatic environments as well as compressive tectonic conditions. Segmentation processes, including aggradation/entrenchment cycles and changes in the location of the depositional lobe, are mainly controlled by climatic and/or tectonic changes as well as channel piracy processes in the drainage system. Alluvial fan deposits include debris flows, sheet flows and braided channel facies associated with high water discharge events in an arid environment. The best mean OSL age estimated for stage Qf2 is 84.5 ± 7 ka BP. In addition, a thrust fault affecting these deposits has been recognized and, as a consequence, the compressive tectonics must date from the Upper Pleistocene in this area of the Andean Eastern Cordillera.  相似文献   
169.
The Timiskaming earthquake, which occurred near the Quebec-Ontario border at the northwest end of the Western Quebec seismic zone in 1935, is one of the five largest instrumentally recorded southeastern Canadian earthquakes. Previous studies of this earthquake concentrated on modeling teismograms recorded at regional distances, a better constrained focal mechanism is obtained. The waveforms indicate thrust faulting on a moderately dipping northwest striking plane at a depth of 10 km. TheM w of 6.1 determined in this study is in good agreement with previous magnitude estimates (m b 6.1,M s 6.0, andm bLg 6.2–6.3). The focal mechanism is similar to those of many recent small to moderate earthquakes in the region, and the inferred (from theP axis) acting stress of northeast compression is consistent with the overall eastern North American stress field. The Lake Timiskaming Rift Valley in which the earthquake occurred, comprises several northwest striking faults consistent with the strike of the 1935 event. Thus, the 1935 earthquake appears to be a result of faulting on the reactivated Timiskaming graben.  相似文献   
170.
Holocene colluvial deposits from the Prebetic Zone (Betic Cordillera, S Spain) contain calcretes separating two colluvial units. Calcrete profiles contain three horizons: cemented gravels, chalky and massive-laminar. Scanning electron microscopy study revealed the presence of calcified filaments, rounded peloids and coated grains which indicates that calcrete formation was controlled by the microbial activity related with plant roots. X-ray powder diffraction data showed the presence of smectite and hematite and the absence of sepiolite–palygorskite, suggesting a semi-arid climate. The main factors controlling the features of the different calcrete horizons are topography (lateral continuity), inputs of colluvial deposits (cemented gravels and chalky calcrete) and water availability (massive-laminar calcrete).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号