首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   212篇
  免费   14篇
  国内免费   7篇
测绘学   3篇
大气科学   13篇
地球物理   56篇
地质学   104篇
海洋学   12篇
天文学   3篇
综合类   3篇
自然地理   39篇
  2022年   1篇
  2021年   3篇
  2020年   8篇
  2019年   3篇
  2018年   5篇
  2017年   3篇
  2016年   12篇
  2015年   8篇
  2014年   6篇
  2013年   19篇
  2012年   6篇
  2011年   6篇
  2010年   7篇
  2009年   20篇
  2008年   16篇
  2007年   12篇
  2006年   17篇
  2005年   12篇
  2004年   12篇
  2003年   13篇
  2002年   7篇
  2001年   4篇
  2000年   7篇
  1999年   6篇
  1997年   4篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
  1977年   1篇
排序方式: 共有233条查询结果,搜索用时 906 毫秒
121.
122.
Natural Gas Hydrate Stability in the East Coast Offshore-Canada   总被引:1,自引:0,他引:1  
The methane hydrate stability zone beneath the Canadian East Coast oceanic margin has developed to a depth of more than 600 meters beneath the deep water column in the area of the deep shelf and the slope. This zone is continuous spreading from the Labrador continental shelf in the north to the slope of the Nova Scotia shelf in the south. Gas hydrates within the methane hydrate stability zone are detected only in one situation, however, they are numerous in the deeper zone in which type II gas hydrates are present through the whole area at water depths as low as 100-200 m. Well-log indications of gas hydrate situated deeper than the base of the methane hydrate stability zone may be an indication of wetter, compositionally more complicated hydrates that probably are not of bacterial only origin. This could indicate a deep thermogenic source of gas in hydrates. The presence of hydrates in the upper 1000 m of sediments also can be considered as an indicator of deeper hydrocarbon sources.  相似文献   
123.
124.
The Middle Jurassic Fourth of July Batholith and cross-cutting mafic dikes have been studied geochronologically, geobarometrically and paleomagnetically to estimate subsequent tectonic motion of the Cache Creek Terrane (CCT) in the northern Canadian Cordillera. 40Ar/39Ar hornblende ages from a granodiorite phase are similar to U–Pb zircon ages and indicate rapid cooling of the batholith upon intrusion, suggesting that the magnetization age is coincident with the 173-Ma crystallization age. Argon ages of biotite from the granodiorite and two mafic dikes have similar ages of 165 Ma, which dates cooling through 280 °C.Aluminum-in-hornblende geobarometry indicates differential uplift of the batholith across a north–south fault zone along Atlin Lake with >6 km more uplift on its eastern side. Also, the eastern side has been tilted downward to the south–southwest by 9°.Combined paleomagnetic data from 20 granitoid and 11 mafic dike sites yield an in situ paleopole at 55°W, 63°N (dp=5°, dm=5°) and a tilt-corrected paleopole at 81°W, 55°N (dp=5°, dm=6°). Compared to the 173-Ma reference pole for the North American craton, the tilt-corrected pole suggests a significant southward translation of 16.1±3.7° and a significant clockwise rotation of 107±7°. The translation estimate is similar to the Jurassic Teslin Crossing pluton in the Stikine Terrane, however, the rotation estimate is very different. This could indicate that the Cache Creek Terrane was at a similar latitude of the Stikine Terrane, but the two were not yet amalgamated.  相似文献   
125.
Stress fields in the Iberian-Maghrebi region   总被引:1,自引:0,他引:1  
This study concerns the present stressfield between the Eurasian and Africanplates in the Iberian-Maghrebi region(Portugal, Spain, Morocco, Algeria andTunisia). In addition to an up-to-datecatalogue of earthquakes in this area, acatalogue of the focal mechanisms composedof 486 solutions of fault planes,standardized in terms of notation andinformation type, was used. These data wereused applying the right-dihedron method ofAngelier and Mechler (1977), to obtaindifferent zones with homogeneous stress.The results obtained for shallowearthquakes (h < 30 km) coincide, in themajority of cases, with the general stressfields proposed by numerous authors forthis region, according to which there isNW-SE compression. However, the stressorientation appears to vary in certainareas, perhaps perturbed by the opening ofthe Atlantic Ocean, the approach of Iberiaand Africa, or the extension of the AlboranSea.For the intermediate earthquakes (30 < h< 150 km) no general pattern was found,and the P and T axes seem to be randomlyoriented for the depth intervalsconsidered. For the very deep earthquakes(h > 600 km), however, the P axis lies ina NNW-SSE direction, dipping towards theSSE, while the T axis is subhorizontal in aNE-SW direction.The determinations from the focalmechanisms highlight the existence of aregional stress field with a subhorizontalcompression axis trending NW-SE. Superimposed are others that specificallyaffect particular sectors; these arerelated to the opening of the AtlanticOcean, the extension of the BeticCordillera and the Alboran Sea, and eventhe present compression between the Iberianand European plates.  相似文献   
126.
—A palaeomagnetic investigation has been carried out at 14 sites on Jurassic red nodular limestones from the central and eastern part of the External Zones of the Betic Cordillera (Subbetic and Prebetic Zones). Progressive thermal demagnetisation of samples from the Subbetic Zone reveals the presence of two stable magnetic components of the natural remanent magnetisation: 1) a secondary Neogene syn-folding component and 2) the original Jurassic magnetisation. As similar characteristics have been reported in Jurassic limestones from the western Subbetic Zone, a widespread remagnetisation event took place within <106 years in the entire Subbetic region during Neogene times. In contrast, in the Prebetic region, no evidence for a secondary overprint has been detected. Palaeomagnetic Jurassic declinations indicate variable and locally very large clockwise rotations (35°–140°), but the two sites in the north-westernmost part of the investigated region are not rotated. The use of both components of magnetisation and the incremental fold-test results allowed the timing of block rotations in the Subbetic Zone to be constrained. Rotations in the western Subbetic occurred after the acquisition of the secondary overprint, whereas in the central part of the Subbetic Zone they were completed by the time of the remagnetisation event.  相似文献   
127.
Moraines that dam proglacial lakes pose an increasing hazard to communities in the Andes and other mountain ranges. The moraines are prone to failure through collapse, overtopping by lake waters or the effect of displacement waves resulting from ice and rock avalanches. Resulting floods have led to the loss of thousands of lives in the Cordillera Blanca mountains of Peru alone in the last 100 years. On 22 April 2002 a rock avalanche occurred immediately to the south‐west of Laguna Safuna Alta, in the Cordillera Blanca. The geomorphic evidence for the nature, magnitude and consequences of this event was investigated in August 2002. Field mapping indicated that the avalanche deposited 8–20 × 106 m3 of rock into the lake and onto the surface of the frontal region of Glaciar Pucajirca, which flows into the lake. Repeated bathymetric surveying indicated that ~5 × 106 m3 of this material was deposited directly into the lake. The immediate effect of this event was to create a displacement wave that gained in height as it travelled along the lake basin, overtopping the impounding moraine at the lake's northern end. To achieve overtopping, the maximum wave height must have been greater than 100 m. This, and subsequent seiche waves, caused extensive erosion of both the proximal and distal faces of the impounding terminal moraine. Further deep gullying of the distal face of this moraine resulted from the supply of pressurized water to the face via a relief overflow tunnel constructed in 1978. Two‐dimensional, steady‐state analysis of the stability of the post‐avalanche moraine rampart indicates that its proximal face remains susceptible to major large‐scale rotational failure. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
128.
Plate tectonic theory predicts that most deformation is associated with subduction and terrane accretion, with some deformation associated with transform/transcurrent movements. Deformation associated with subduction varies between two end members: (1) where the tectonic regime is dominated by subduction of oceanic lithosphere containing small terranes, a narrow surface zone of accretionary deformation along the subduction zone starts diachronously on the subducting plate at the trench as material is transferred from the subducting plate to the over-riding plate; and (2) where continent-continent collision is occurring, a wide surface zone of accretionary deformation starts synchronously or with limited diachronism. Palaeozoic deformational events in the Canadian Appalachians correspond to narrow diachronous events in the Ordovician and Silurian, whereas Devonian, Carboniferous and Permian deformational events are widespread and broadly synchronous. Along the western side of the Canadian Appalachians, the Taconian deformational event starts diachronously throughout the Ordovician and corresponds to the north-north-west accretion of the Notre Dame, Ascot-Weedon, St Victor and various ophiolitic massifs (volcanic arc and peri-arc terranes) over cratonic North America. Within the eastern half of the Central Mobile Belt, the Late Cambrian-Early Ordovician Penobscotian deformational event corresponds to the ?south-easterly accretion of the Exploits subzone (various volcanic are and peri-arc terranes) over the Gander Zone (?continental rise). In the centre of the orogen, the Late Ordovician-Silurian Beothukan deformational event corresponds to the south-easterly accretion of the Notre Dame over the Exploits-Gander subzones. Along the south-eastern side of the Central Mobile Belt, the Silurian Ganderian deformational event corresponds to the north-north-east, sinistral transcurrent accretion of the Avalon Composite Terrane (microcontinent) over the Gander-Exploits zones. Along the south-eastern half of the orogen, the Late Silurian-Middle Devonian Acadian deformation event corresponds to the westerly accretion of the Meguma terrane (intradeep or continental rise) over the Avalon Composite Terrane. Affecting the entire orogen, the Late Devonian, Carboniferous and Permian, Acadian-Alleghanian deformational events correspond to the east-west convergence between Laurentia and Gondwana (continent-continent collision).  相似文献   
129.
The Grand Banks and the Scotian Shelf regions of the Canadian Atlantic often experience strong winds and high waves associated with the passage of intense storms during the winter months of December to March. These storm waves are identified as a major hazard to shipping, offshore exploration and other marine activities in eastern Canada.In this study, an operational spectral ocean wave model has been used to simulate sea-states associated with selected storm events in the Canadian Atlantic. The wave model operates on a grid (with grid spacing of about 111 km) which covers a major portion of the north Atlantic. A nested fine grid (with grid spacing of about 37 km) has been designed which covers the shelf regions of the Canadian Atlantic. The model employs deep-water physics over the coarse grid while over the fine grid shallow-water processes as represented by wave refraction, wave shoaling, bottom friction and wave number scaling are included. The wave model also includes, as an optional package, the third-generation source terms as represented by the nonlinear wave-wave interaction terms.For two selected storm events, the model generated sea-states are evaluated against available buoy data as well as against hand analyzed operational wave height charts over the northwest Atlantic. The evaluation shows that the various versions of the model can simulate the observed sea-states, reasonably well. The utility of the wave model in providing numerical guidance for offshore activities is briefly discussed.  相似文献   
130.
The Lince–Estefanía stratabound copper deposit in the Michilla district is one of the most important deposits in the Coastal Cordillera of northern Chile and is one of the most representative of this type of deposit. Chalcocite and bornite characterize the main stage of hypogene copper sulfide mineralization. Rhenium and osmium isotopes are used here to constrain the age of hypogene mineralization and the source of osmium contained in these ore minerals. A Re–Os isochron yielded an age of 160±16 Ma (2σ), with an associated initial 187Os/188Os ratio of 1.06±0.09 (mean square of weighted deviates=1.8). This age is consistent with available geochronological data from volcanic rocks that host the mineralization and associated alteration phases. The high initial 187Os/188Os ratio indicates a lower crustal component for the source of Os and, by inference, the Cu sulfides that contain this Os. Late hematite occurs as an isolated phase or, more commonly, is associated with the chalcocite–bornite and supergene chalcocite–covellite associations. Analyses performed on pure hematite indicate a disturbance of the Re–Os system, and hence, this mineral phase is not useful as a Re–Os geochronometer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号