首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2866篇
  免费   625篇
  国内免费   331篇
测绘学   178篇
大气科学   149篇
地球物理   1007篇
地质学   1342篇
海洋学   278篇
天文学   8篇
综合类   180篇
自然地理   680篇
  2024年   10篇
  2023年   25篇
  2022年   73篇
  2021年   128篇
  2020年   141篇
  2019年   145篇
  2018年   117篇
  2017年   142篇
  2016年   138篇
  2015年   126篇
  2014年   168篇
  2013年   241篇
  2012年   159篇
  2011年   155篇
  2010年   132篇
  2009年   159篇
  2008年   176篇
  2007年   202篇
  2006年   187篇
  2005年   145篇
  2004年   164篇
  2003年   141篇
  2002年   118篇
  2001年   99篇
  2000年   80篇
  1999年   72篇
  1998年   77篇
  1997年   68篇
  1996年   41篇
  1995年   47篇
  1994年   39篇
  1993年   18篇
  1992年   17篇
  1991年   12篇
  1990年   13篇
  1989年   11篇
  1988年   12篇
  1987年   6篇
  1986年   7篇
  1985年   4篇
  1984年   4篇
  1982年   2篇
  1981年   1篇
排序方式: 共有3822条查询结果,搜索用时 78 毫秒
991.
Rivers are closely related to climate, and the hydrogeomorphic features and stability of river channels respond sensitively to climatic change. However, the history of instrumental observations of climatic, hydrological and channel changes is short, notably limiting our ability to understand the complex river responses to long-term climate change and human activity. In this study, we show that cave stalagmite records reflected the variations in precipitation and temperature in the Yellow River basin, and the net primary productivity (NPP) of vegetation over the past 1800 years can therefore be reconstructed. We found that the reconstructed annual mean precipitation (Pm) and NPP closely related to the 1800-year variation of the lower Yellow River (LYR) channel instability indexed by the frequency of the LYR levee breaching events (LBEs) (Fb) derived from historical documents. The temporal variations in Pm, NPP and Fb exhibited an anti-phase relationship (negative correlation) and in-phase relationship (positive correlation), referred to as Type I and Type II relationships, respectively. The two types alternately appeared, dividing the studied period into several sub-periods. Type I occurred when the vegetation remained in a quasi-natural condition, and Type II occurred when the vegetation had been altered by humans to some degree. These features reflect complex river behaviours in response to climate change and human activity and may be explained by the interaction between climate, vegetation and human activity on the millennial timescale. © 2018 John Wiley & Sons, Ltd.  相似文献   
992.
Scroll bars across a 65-km stretch of the Trinity River in Texas, USA were studied using LiDAR data as well as with a series of 11 trenches spread out across the survey area. We conclude that scroll bars are levees that are deposited along the inner banks of these meandering river bends. Scroll bar crests were found to have similar elevations to those of outer bank levee crests, implying that they are constructional features that create positive topographic relief above the elevation of the floodplain. Trenches reveal that scroll bars are built from reworked suspended sediment, with common ripple-scale cross stratification, planar laminations and muddy bioturbated layers – characteristics often associated with levee sedimentation in other systems. LiDAR observation of the erosion of scroll bars by bed material transport during flood implies that scroll bar spacing is an imperfect proxy for estimating overall channel migration rates. In addition, interspersed lenses of coarser sediment with dune-scale cross stratification represent the stratigraphic record of these erosional events and suggest that erosion of the channel-ward edge of the scroll bar is not uncommon. Preservation of scroll bars is unlikely, given that they are responsible for an average of only the uppermost 12% of the total inner bank relief. We suggest that misidentification of point bar lateral accretion surfaces as scroll bars is common and can lead to issues with reconstructing channel properties due to systematic differences between point bar and scroll bar planform geometries. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   
993.
River confluences are characterized by a complex mixing zone with three-dimensional (3D) turbulent structures which have been described as both streamwise-oriented structures and Kelvin–Helmholtz (KH) vertical-oriented structures. The latter are visible where there is a turbidity difference between the two tributaries, whereas the former are usually derived from mean velocity measurements or numerical simulations. Few field studies recorded turbulent velocity fluctuations at high frequency to investigate these structures, particularly at medium-sized confluences where logistical constraints make it difficult to use devices such as acoustic doppler velocimeter (ADV). This study uses the ice cover present at the confluence of the Mitis and Neigette Rivers in Quebec (Canada) to obtain long-duration, fixed measurements along the mixing zone. The confluence is also characterized by a marked turbidity difference which allows to investigate the mixing zone dynamics from drone imagery during ice-free conditions. The aim of the study is to characterize and compare the flow structure in the mixing zone at a medium-sized (~40 m) river confluence with and without an ice cover. Detailed 3D turbulent velocity measurements were taken under the ice along the mixing plane with an ADV through eight holes at around 20 positions on the vertical. For ice-free conditions, drone imagery results indicate that large (KH) coherent structures are present, occupying up to 50% of the width of the parent channel. During winter, the ice cover affects velocity profiles by moving the highest velocities towards the centre of the profiles. Large turbulent structures are visible in both the streamwise and lateral velocity components. The strong correlation between these velocity components indicates that KH vortices are the dominating coherent structures in the mixing zone. A spatio-temporal conceptual model is presented to illustrate the main differences on the 3D flow structure at the river confluence with and without the ice cover. © 2019 John Wiley & Sons, Ltd.  相似文献   
994.
ABSTRACT

Rapid urbanization in China has severely disturbed the underlying surface and river systems. The stream structure parameters of Suzhou City were analysed to study the evolution and spatial differentiation of a water system undergoing urbanization. The influencing pattern of different urbanization processes on river system structure and hydrological processes was detected by statistical methods and simulation analysis. The results show that urban sprawl is influenced by both the natural environment and the social economy. At different stages of urbanization, the spatial urban expansion and the natural river characteristics influence the evolution of the river network: during rapid urbanization, the decline in surface water ratio and river density is more intense. The decrease of surface water ratio and river density in rapidly urbanized areas was greatest, followed by that in area urbanized in the 1980s, with few changes in the old town. Under high urbanization, river system indicators tend to stabilize. The rivers’ hydrological features were affected by urbanization, with water yield in the study area increasing from 0.81 to 0.95 m3/m2 (1991–2015). The same rainfall intensity results in higher flood levels and greater risk of flooding under rapid urbanization.  相似文献   
995.
Throughout the history of China, the Yellow River has been associated with flood disasters and changes in the course of its lower reaches because of sedimentation. From 602 B.C. to 1949 the river experienced 1593 levee bursts, flooding vast areas, and claiming millions of human lives. The river shifted its main course by avulsion 26 times with the apex around Zhengzhou, resulting in devastating calamities and numerous old channels. Training of the Yellow River has a history of more than 3000 yr. Levee construction has been the major strategy for flood control. Two extremely different strategies has been proposed and practiced in the past 2000 yr, i.e. the "wide river and depositing sediment" strategy and the "narrow river and scouring sediment" strategy. This paper analyzes the levee breaches and flood disasters in the past 2000 yr and compares the results of the two extremely different strategies. The "narrow river and scouring sediment" strategy has only short term effects on levee breach control and flood mitigation. The "wide river and depositing sediment" strategy can essentially mitigate flood disasters and reduce levee breaches for a long term period of time. The "wide river and depositing sediment" strategy has been used and no levee breach has occurred in the past 67 yr, which has been the only periods of more than 50 yr with no levee breaches in the history of the Yellow River since 700 A.D.Modern flood and sedimentation management methods have also been introduced, and the strategy of applying the ' "widen the river and enhance the levees" approach for the upper and lower reaches management is proposed.  相似文献   
996.
Mountainous river basins are one of the main sources of sediment. Over long time scales, sediment production is sustained by the persistent dissection of river basins, which is promoted by tectonic activity. The response or adjustment of rivers to forcing factors such as uplift is based on the concept of the graded river and a feedback mechanism between the incision and uplift. Although the development of graded rivers under natural circumstances has been discussed for a long time, knowledge about the transition of river basins under heterogeneous uplift is not enough. To understand the development of a river basin with a non‐uniform uplift rate, two simple cases are examined: landward and seaward tilting uplift, where the uplift rate varies linearly in space. For our study, laboratory experiments were conducted and the results were compared with those of natural river basins; two river basins in Yakushima Island were selected for this purpose. In both the laboratory and Yakushima, the longitudinal profile of the river basin under landward‐tilting uplift has a convex‐up zone and a specific knickpoint is formed at the upstream end of this zone. This knickpoint is inactive with respect to migration and incision owing to the insufficient cumulative uplift to the equilibrium state. It was also observed in both the experimental and natural cases that the profile of the river basin under seaward tilting is unlikely to have such a convex‐up zone in the long term, and will instead have a smooth concave profile. Therefore, the spatiotemporal pattern of dissection differs depending on the type of tilting uplift, which suggests that sediment production also varies in time and space according to the type of uplift.  相似文献   
997.
998.
This paper describes the development of the first operational seasonal hydrological forecasting service for the UK, the Hydrological Outlook UK (HOUK). Since June 2013, this service has delivered monthly forecasts of streamflow and groundwater levels, with an emphasis on forecasting hydrological conditions over the next three months, accompanied by outlooks over longer time horizons. This system is based on three complementary approaches combined to produce the outlooks: (i) national-scale modelling of streamflow and groundwater levels based on dynamic seasonal rainfall forecasts, (ii) catchment-scale modelling where streamflow and groundwater level models are driven by historical meteorological forcings (i.e. the Ensemble Streamflow Prediction, ESP, approach), and (iii) a catchment-scale statistical method based on persistence and historical analogues. This paper provides the background to the Hydrological Outlook, describes the various component methods in detail and then considers the impact and usefulness of the product. As an example of a multi-method, operational seasonal hydrological forecasting system, it is hoped that this overview provides useful information and context for other forecasting initiatives around the world.  相似文献   
999.
There is increasing demand for models that can accurately predict river temperature at the large spatial scales appropriate to river management. This paper combined summer water temperature data from a strategically designed, quality controlled network of 25 sites, with recently developed flexible spatial regression models, to understand and predict river temperature across a 3,000 km2 river catchment. Minimum, mean and maximum temperatures were modelled as a function of nine potential landscape covariates that represented proxies for heat and water exchange processes. Generalised additive models were used to allow for flexible responses. Spatial structure in the river network data (local spatial variation) was accounted for by including river network smoothers. Minimum and mean temperatures decreased with increasing elevation, riparian woodland and channel gradient. Maximum temperatures increased with channel width. There was greater between‐river and between‐reach variability in all temperature metrics in lower‐order rivers indicating that increased monitoring effort should be focussed at these smaller scales. The combination of strategic network design and recently developed spatial statistical approaches employed in this study have not been used in previous studies of river temperature. The resulting catchment scale temperature models provide a valuable quantitative tool for understanding and predicting river temperature variability at the catchment scales relevant to land use planning and fisheries management and provide a template for future studies.  相似文献   
1000.
Although in-channel and floodplain large wood (LW) has been recognized as an important component of lotic ecosystems, there is still limited knowledge on the recruitment, mobility and retention of LW in rivers with an intermittent hydrological regime. In this study, we analysed the LW characteristics and related reach-scale variables of 22 reaches in a Mediterranean intermittent river (Evrotas, Greece) in order to identify predictors of in-channel and floodplain LW distribution. Our results indicated high downstream variation in LW volumes in the fluvial corridor (0.05–25.51 m3/ha for in-channel LW and 0–30.88 m3/ha for floodplain LW). In-channel and floodplain LW retention was primarily driven by the hydrological regime of the studied reaches (i.e. perennial or non-perennial) with higher volumes of LW observed in perennial sections. The width of the riparian corridor was an important predictor of LW storage at the reach scale. Non-perennial reaches had a disproportionally larger number of relatively small-diameter living trees at the expense of mature trees with larger diameters typical for riparian stands functioning as LW recruitment areas in perennial reaches. The smaller dimensions of in-channel LW in non-perennial reaches, coupled with the dominance of loose LW pieces, implies frequent LW transport during ordinary flood events. Nevertheless, overall low LW retention in the fluvial corridor under non-perennial flow regime predicts low volumes of mobilized LW. In contrast, the recruitment of relatively long and large-diameter LW from mature riparian stands in perennial reaches, together with additional LW stabilization by banks, bed sediments, living trees or other LW pieces decreases the potential for further LW transport. © 2020 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号