The Huaihe River basin of Anhui is not only a transitional zone of physical geography, but also a convergent area of many cultures in China. It is one of the sensitive ecotones to global changes and the birthplace of Chinese civilization. Using the field archaeological data and the sporo-pollens and the age data of the drilling cores, we analysed Neolithic cultural development and environmental evolution in the Huaihe River basin of Anhui. According to the combination of some research results in archaeology with environmental evolution research, this paper discusses the relationship between culture and environment in the Huaihe River basin of Anhui. The Neolithic cultural development was strongly impacted by the environmental change. The primitive culture (Shishanzi) was developed in the beginning of the Holocene Megathermal Period with distinct regional feature of the culture. From 6.5 kaBP to 5.5 kaBP, the climate changed warmer and wetter. The frequent occurrence of flood and waterlog due to such a climate regime and high sea level caused the earth’s surface environment deteriorated in the Huaihe River basin of Anhui and the interruption of the Neolithic cultural development, hence a lack of archaeological sites. From 5.5 kaBP to 4.0 kaBP, the climate changed from wet to dry, the natural environment was propitious to human survival. Dawenkou Culture and Longshan Culture flourished in this period. The Neolithic cultural development, the number of the sites and their distribution characteristics of the sites in the study area differed apparently from those in Central China and Shandong Province. 相似文献
We reconstructed vegetation responses to climate oscillations, fire and human activities since the last glacial maximum in inland NW Iberia, where previous paleoecological research is scarce. Extremely sparse and open vegetation composed of steppic grasslands and heathlands with scattered pioneer trees suggests very cold and dry conditions during the Oldest Dryas, unsuitable for tree survival in the surroundings of the study site. Slight woodland expansion during the Bølling/Allerød was interrupted by the Younger Dryas cooling. Pinewoods dominated for most of the early Holocene, when a marked increase in fire activity occurred. Deciduous trees expanded later reaching their maximum representation during the mid-Holocene. Enhanced fire activity and the presence of coprophilous fungi around 6400–6000 cal yr BP suggest an early human occupation around the site. However, extensive deforestation only started at 4500 cal yr BP, when fire was used to clear the tree canopy. Final replacement of woodlands with heathlands, grasslands and cereal crops occurred from 2700 cal yr BP onwards due to land-use intensification. Our paleoecological record can help efforts aimed at restoring the natural vegetation by indicating which communities were dominant at the onset of heavy human impact, thus promoting the recovery of currently rare oak and alder stands. 相似文献
通过对毛乌素沙地东缘大柳塔剖面地层沉积物粒度及磁化率特征的分析,结合光释光测年结果,探讨了毛乌素沙地全新世气候变化。结果表明:(1)剖面沉积物粒度组成以中砂、粗砂为主,古土壤中黏粒组分含量高(3.32%),风成砂中几乎不含黏粒组分(0.01%),粒度参数的平均粒径M_z和分选系数σ也表现为古土壤高值、风成砂低值;(2)磁化率在全剖面呈有规律的变化,低频、高频磁化率在古土壤中呈高值,湖沼相、弱成壤次之,风成砂最小;低频磁化率χlf与黏粒(<2μm)含量、平均粒径M_z呈显著正相关,垂向剖面上变化规律一致,指示了相似的气候环境意义;(3)毛乌素沙地在10.39 ka BP附近存在明显的3次冷干-暖湿气候波动; 10.39~9.34 ka BP,气候冷干,风沙活动盛行; 9.34~8.68 ka BP,冬季风衰退,夏季风增强,成壤作用强烈; 8.68~8.29 ka BP,气候寒冷干燥; 8.29~2.72 ka BP,气候整体温暖湿润,在6.55~3.80 ka BP达到鼎盛后转向冷干; 2.72~1.34 ka BP,冬季风占主导,沙丘活化,沙漠扩张; 1.34 ka BP至今,逐渐接近现代气候。毛乌素沙地的全新世气候变化是东亚冬、夏季风此消彼长作用下全球气候变化的区域响应。 相似文献
We used neutron activation analysis to determine ten trace elements retained in Abee (E4) samples heated at 400–1000°C for 1 week in a low-pressure (initially ~ 10?5atm H2) environment. Eight elements generally are lost progressively with increasing temperature although gas(es) evolved from the samples apparently affect retention of some elements. In the extreme, ‘open-system’ losses are: Se—23%, Cs—40%; Te—87%; Ag, Bi, In, Tl, Zn— ≥93%. Under these conditions Co is not lost; Ga is lost only at 1000°C. At 900°C elements are lost from Abee chips in the same relative order as from Abee powder but the loss is somewhat less facile. Three of the most mobile elements—Bi, In, Tl—are lost more readily from Abee than from Allende (C3), the only other primitive chondrite studied to date. Assuming that elemental loss is a kinetic process involving mobilization from spherical grains, Bi, In, Se, Tl and Zn have different activation energies at high and low temperatures either because each element was originally present in two different sites or each has more than one loss mechanism (diffusion or desorption) in different temperature ranges.Comparison of elemental abundance patterns, patterns of statistically-significant correlations, factor analysis results and two-element correlation diagrams indicate strong similarities between heated Abee and ‘as-received’ enstatite chondrites for mobile elements. These results are consistent with a two-stage evolutionary model for enstatite chondrites involving condensation of cosmochemically fractionated primitive nebular material and subsequent loss of mobile elements from parent material by metamorphism. 相似文献
A migmatitic orthogneiss in the Western Segment in the Sveconorwegian Province of the Baltic Shield was dated using the ion-probe U–Pb method on zircon grains, which were also analysed for rare earth elements. Mesosome zircons have 1.605±0.010 Ga magmatic cores, which places the gneiss protolith in the same 1.61–1.59 Ga time bracket as continental arc-related gneisses, abundant in this part of the Sveconorwegian Province. These cores show REE profiles with strong HREE enrichment, positive Ce- and negative Eu-anomalies, typical of magmatic zircon. Migmatite leucosomes are folded and parallel with or slightly discordant to the fabric. They contain a small population of zircon with cores and metamorphic rims, which are interpreted as xenocrysts incorporated in the leucosome during melting of the mesosome. CL-bright metamorphic embayments and rims on xenocrysts reflect 1.01±0.05 Ga Sveconorwegian metamorphic reworking. Ce-anomalies are nearly absent and Eu-anomalies are reduced relative to igneous spots. This is probably a feature of fluid controlled environments where Ce and Eu oxidation states are buffered by the metamorphic fluid. From this and discordant rims from the mesosome we also conclude that the rims formed by reworking of the older zircon where the Pb-loss was also fluid induced. In the leucosome veins, magmatic acicular zircon gives 0.92±0.01 Ga, ascribed to the crystallisation of the veins. They originated by local melting, probably augmented by magma that formed at a deeper level. Widespread granitic and noritic late-Sveconorwegian magmatism close to 0.92 Ga in other parts of the Western Segment has equivalents in the Norwegian sectors of the Sveconorwegian Province. Leucosome formation was therefore part of a regional event related to exhumation of the Sveconorwegian Eastern Segment. We also provide the first unequivocal evidence for ductile deformation related to late-Sveconorwegian magmatism. 相似文献