首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13583篇
  免费   3006篇
  国内免费   3861篇
测绘学   1657篇
大气科学   1528篇
地球物理   4262篇
地质学   8450篇
海洋学   2021篇
天文学   235篇
综合类   1077篇
自然地理   1220篇
  2024年   39篇
  2023年   145篇
  2022年   366篇
  2021年   515篇
  2020年   548篇
  2019年   764篇
  2018年   591篇
  2017年   675篇
  2016年   682篇
  2015年   791篇
  2014年   988篇
  2013年   891篇
  2012年   981篇
  2011年   1044篇
  2010年   937篇
  2009年   981篇
  2008年   924篇
  2007年   1028篇
  2006年   1015篇
  2005年   852篇
  2004年   807篇
  2003年   671篇
  2002年   525篇
  2001年   450篇
  2000年   453篇
  1999年   426篇
  1998年   402篇
  1997年   344篇
  1996年   291篇
  1995年   247篇
  1994年   242篇
  1993年   178篇
  1992年   170篇
  1991年   110篇
  1990年   87篇
  1989年   115篇
  1988年   60篇
  1987年   45篇
  1986年   23篇
  1985年   14篇
  1984年   4篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1980年   5篇
  1978年   1篇
  1976年   1篇
  1972年   1篇
  1954年   12篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
The two-dimensional problem of the generation of water waves due to instantaneous disturbances prescribed at the bed of a beach sloping at an arbitrary angle is studied here. It is formulated in terms of an initial-boundary-value problem for the velocity potential describing the motion in the fluid region assuming the linear theory. Using the Laplace transform in time and the Mellin transform in distance, the problem is reduced to solving a difference equation whose method of solution is of considerable importance in the literature. The form of the free surface is obtained in terms of a multiple infinite integral that is evaluated by the method of steepest-descent. For some prescribed forms of the disturbance at the bed of the beach, the free surface is depicted in a number of figures for different beach angles. It is observed that as the beach angle decreases, the maximum wave height increases, which is plausible.  相似文献   
992.
Songhao Shang 《水文研究》2012,26(22):3338-3343
Calculation of actual crop evapotranspiration under soil water stress conditions is crucial for hydrological modeling and irrigation water management. Results of actual evapotranspiration depend on the estimation of water stress coefficient from soil water storage in the root zone, which varies with numerical methods and time step used. During soil water depletion periods without irrigation or precipitation, the actual crop evapotranspiration can be calculated by an analytical method and various numerical methods. We compared the results from several commonly used numerical methods, including the explicit, implicit and modified Euler methods, the midpoint method, and the Heun's third‐order method, with results of the analytical method as the bench mark. Results indicate that relative errors of actual crop evapotranspiration calculated with numerical methods in one time step are independent of the initial soil water storage in the range of soil water stress. Absolute values of relative error decrease with the order of numerical methods. They also decrease with the number of time step, which can ensure the numerical stability of successive simulation of soil water balance. Considering the calculation complexity and calculation errors caused by numerical approximation for different time step and maximum crop evapotranspiration, the explicit Euler method is recommended for the time step of 1 day (d) or 2 d for maximum crop evapotranspiration less than 5 mm/d, the midpoint method or the modified Euler method for the time step of up to one week or 10 d for maximum crop evapotranspiration less than 5 mm/d, and the Heun's third‐order method for the time step of up to 15 d. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
993.
Particle manifold method (PMM) is a new extension of the numerical manifold method (NMM). PMM uses a mathematical cover system to describe the motion and deformation of a particle‐based physical domain. By introducing the concept of particle into NMM, PMM takes the advantages of easy topological and contact operations with particles. In this article, the methodology, formulations and implementation of the method are presented, together with modelling examples for validation. It is found that good solutions for both continuous and discontinuous problems are obtained by the new developed PMM. Due to the underlying coupled continuum‐discontinuum property of PMM, it has great potential for modelling of geomechanical problems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
994.
This paper presents a finite‐element (FE) model for simulating injection well testing in unconsolidated oil sands reservoir. In injection well testing, the bottom‐hole pressure (BHP) is monitored during the injection and shut‐in period. The flow characteristics of a reservoir can be determined from transient BHP data using conventional reservoir or well‐testing analysis. However, conventional reservoir or well‐testing analysis does not consider geomechanics coupling effects. This simplified assumption has limitations when applied to unconsolidated (uncemented) oil sands reservoirs because oil sands deform and dilate subjected to pressure variation. In addition, hydraulic fracturing may occur in unconsolidated oil sands when high water injection rate is used. This research is motivated in numerical modeling of injection well testing in unconsolidated oil sands reservoir considering the geomechanics coupling effects including hydraulic fracturing. To simulate the strong anisotropy in mechanical and hydraulic behaviour of unconsolidated oil sands induced by fluid injection in injection well testing, a nonlinear stress‐dependent poro‐elasto‐plastic constitutive model together with a strain‐induced anisotropic permeability model are formulated and implemented into a 3D FE simulator. The 3D FE model is used to history match the BHP response measured from an injection well in an oil sands reservoir. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
995.
One‐dimensional consolidation analysis of layered soils conventionally entails solving a system of differential equations subject to the flow conditions at the bounding upper and lower surfaces, as well as the continuity conditions at the interface of every pair of contiguous layers. Formidable computational efforts are required to solve the ensuing transcendental equations expressing the matching conditions at the interfaces, using this method. In this paper, the jump discontinuities in the flow parameters upon crossing from one layer to the other have been systematically built into a single partial differential equation governing the space–time variation of the excess pore pressure in the entire composite medium, by the use of the Heaviside distribution. Despite the presence of the discontinuities in the coefficients of the differential equation, a closed‐form solution in the sense of an infinite generalized Fourier series is obtained, in addition to which is the development of a Green's function for the differential problem. The eigenfunctions of the composite medium are the coordinate functions of the series, obtained computationally through the application of the extended equations of Galerkin. The analysis has been illustrated by solving the consolidation problem of a four‐layer composite, and the results obtained agree very well with the results obtained by previous researchers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
996.
A procedure combining the Soil Conservation Service‐Curve Number (SCS‐CN) method and the Green–Ampt (GA) infiltration equation was recently developed to overcome some of the drawbacks of the classic SCS‐CN approach when estimating the volume of surface runoff at a sub‐daily time resolution. The rationale of this mixed procedure, named Curve Number for Green–Ampt (CN4GA), is to use the GA infiltration model to distribute the total volume of the net hyetograph (rainfall excess) provided by the SCS‐CN method over time. The initial abstraction and the total volume of rainfall given by the SCS‐CN method are used to identify the ponding time and to quantify the hydraulic conductivity parameter of the GA equation. In this paper, a sensitivity analysis of the mixed CN4GA parameters is presented with the aim to identify conditions where the mixed procedure can be effectively used within the Prediction in Ungauged Basin perspective. The effects exerted by changes in selected input parameters on the outputs are evaluated using rectangular and triangular synthetic hyetographs as well as 100 maximum annual storms selected from synthetic rainfall time series. When applied to extreme precipitation events, which are characterized by predominant peaks of rainfall, the CN4GA appears to be rather insensitive to the input hydraulic parameters of the soil, which is an interesting feature of the CN4GA approach and makes it an ideal candidate for the rainfall excess estimation at sub‐daily temporal resolution at ungauged sites. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
997.
We derive the governing equations for the dynamic response of unsaturated poroelastic solids at finite strain. We obtain simplified governing equations from the complete coupled formulation by neglecting the material time derivative of the relative velocities and the advection terms of the pore fluids relative to the solid skeleton, leading to a so‐called us ? pw ? pa formulation. We impose the weak forms of the momentum and mass balance equations at the current configuration and implement the framework numerically using a mixed finite element formulation. We verify the proposed method through comparison with analytical solutions and experiments of quasi‐static processes. We use a neo‐Hookean hyperelastic constitutive model for the solid matrix and demonstrate, through numerical examples, the impact of large deformation on the dynamic response of unsaturated poroelastic solids under a variety of loading conditions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
998.
The Analytic Element Method (AEM) provides a convenient tool for groundwater flow analysis in unbounded continuous domains. The AEM is based on the superposition of analytic functions, known as elements, useful at both regional and local scales. In this study, analytic elements for strip aquifers are presented. Such aquifers occur in riverine or coastal deposits and in outcrop zones of confined aquifers. Local flow field is modelled indirectly, using a reference plane related to the aquifer domain through the Schwarz‐Christoffel transform. The regional flow is obtained as a solution of the one‐dimensional flow equation. The proposed methodology was tested by modelling two hypothetical situations, which were compared to exact solutions. It is shown that regional boundaries can be reproduced exactly while local fields are adequately reproduced with analytic elements. The developed elements are applied to simulate a real flow field in northeastern Brazil showing good agreement with measured water levels. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
999.
长江上游水资源耦合系统优化调控涉及供水、发电和生态需水等相互竞争、不可公度的调控目标。其供水-发电-环境互馈协变机制难以数学解析和刻画,多维目标效益均衡优化调控难以实施。为此,以多目标优化、运筹学理论及方法为基础,提出了基于梯度分析法的供水-发电-环境两两互馈关系研究方法。通过多目标约束优化方法求解长江上游水库群联合优化调度在供水-发电-环境目标空间的最优解集,并进行插值构造了供水-发电-环境互馈关系多维空间曲面,以此为基础,采用一阶差分近似求解供水对环境和发电对环境偏导函数值,以量化环境对供水变化和发电变化响应的梯度,进而解析环境-供水和环境-发电间互馈协变关系。该方法为水库群优化调度多目标互馈关系研究提供了一种新的思路。  相似文献   
1000.
本文采用电离法(平板电离室装置)对英产镭源和苏联产镭源进行了研究,找出了两种不同当量壳镭源之间的相关关系,解决了按照国际镭源标准对苏联产镭源含量的检定方法。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号