首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   409篇
  免费   35篇
  国内免费   34篇
测绘学   2篇
大气科学   4篇
地球物理   122篇
地质学   170篇
海洋学   80篇
天文学   1篇
综合类   8篇
自然地理   91篇
  2024年   1篇
  2023年   2篇
  2022年   4篇
  2021年   6篇
  2020年   11篇
  2019年   7篇
  2018年   8篇
  2017年   9篇
  2016年   14篇
  2015年   15篇
  2014年   19篇
  2013年   21篇
  2012年   16篇
  2011年   14篇
  2010年   13篇
  2009年   27篇
  2008年   26篇
  2007年   20篇
  2006年   29篇
  2005年   20篇
  2004年   25篇
  2003年   14篇
  2002年   20篇
  2001年   16篇
  2000年   7篇
  1999年   18篇
  1998年   21篇
  1997年   6篇
  1996年   6篇
  1995年   4篇
  1994年   5篇
  1993年   3篇
  1992年   5篇
  1991年   2篇
  1990年   5篇
  1989年   2篇
  1988年   4篇
  1987年   4篇
  1986年   7篇
  1985年   5篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1981年   4篇
  1980年   4篇
  1979年   1篇
  1978年   2篇
排序方式: 共有478条查询结果,搜索用时 31 毫秒
21.
A model was developed and analyzed to quantify the effect of graded sediment on the formation of tidal sand ridges. Field data reveal coarse (fine) sediment at the crests (in the troughs), but often phase shifts between the mean grain-size distribution and the bottom topography occur. Following earlier work, this study is based on a linear stability analysis of a basic state with respect to small bottom perturbations. The basic state describes an alongshore tidal current on a coastal shelf. Sediment is transported as bed load and dynamic hiding effects are accounted for. A one-layer model for the bed evolution is used and two grain size classes (fine and coarse sand) are considered. Results indicate an increase in growth and migration rates of tidal sand ridges for a bimodal mixture, whilst the wavelength of the ridges remains unchanged. A symmetrical externally forced tidal current results in a grain-size distribution which is in phase with the ridges. Incorporation of an additional external M4 tidal constituent or a steady current results in a phase shift between the grain-size distribution and ridge topography. These results show a general agreement with observations. The physical mechanism responsible for the observed grain-size distribution over the ridges is also discussed.Responsible Editor: Jens Kappenberg  相似文献   
22.
A combined gravity map over the Indian Peninsular Shield (IPS) and adjoining oceans brings out well the inter-relationships between the older tectonic features of the continent and the adjoining younger oceanic features. The NW–SE, NE–SW and N–S Precambrian trends of the IPS are reflected in the structural trends of the Arabian Sea and the Bay of Bengal suggesting their probable reactivation. The Simple Bouguer anomaly map shows consistent increase in gravity value from the continent to the deep ocean basins, which is attributed to isostatic compensation due to variations in the crustal thickness. A crustal density model computed along a profile across this region suggests a thick crust of 35–40 km under the continent, which reduces to 22/20–24 km under the Bay of Bengal with thick sediments of 8–10 km underlain by crustal layers of density 2720 and 2900/2840 kg/m3. Large crustal thickness and trends of the gravity anomalies may suggest a transitional crust in the Bay of Bengal up to 150–200 km from the east coast. The crustal thickness under the Laxmi ridge and east of it in the Arabian Sea is 20 and 14 km, respectively, with 5–6 km thick Tertiary and Mesozoic sediments separated by a thin layer of Deccan Trap. Crustal layers of densities 2750 and 2950 kg/m3 underlie sediments. The crustal density model in this part of the Arabian Sea (east of Laxmi ridge) and the structural trends similar to the Indian Peninsular Shield suggest a continent–ocean transitional crust (COTC). The COTC may represent down dropped and submerged parts of the Indian crust evolved at the time of break-up along the west coast of India and passage of Reunion hotspot over India during late Cretaceous. The crustal model under this part also shows an underplated lower crust and a low density upper mantle, extending over the continent across the west coast of India, which appears to be related to the Deccan volcanism. The crustal thickness under the western Arabian Sea (west of the Laxmi ridge) reduces to 8–9 km with crustal layers of densities 2650 and 2870 kg/m3 representing an oceanic crust.  相似文献   
23.
An avulsion of the lower Saskatchewan River in the 1870s inundated a large segment of peat-covered floodplain that subsequently has become aggraded with a broad (500 km2) belt of alluvium deposited by the redirected flow. Routing of water and sediment discharge through the avulsion-affected area has been accomplished mainly by networks of sandy bedded anastomosed channels that have formed, evolved, and abandoned as the alluvial belt prograded down the floodplain slope. These processes continue today, though at a much-reduced rate. New channels, formed by crevassing and basinward extension of distributaries, are initially small and shallow, with bottom elevations situated within the avulsive alluvium but above the pre-avulsion peat (floodplain) surface. Subsequent enlargement and downcutting of many of these channels eventually uncovers the underlying peat layer whose resistance to erosion exerts significant influence on cross-sectional shape and further channel development. Peat-floored channels tend to have rectangular cross-sections, high ratios of average to maximum depth (D/Dmax), and a large range of width-to-depth ratios. If the channel continues to enlarge, the peat layer eventually becomes breached, commonly leading to temporarily irregular cross-sections caused by localized scouring at the breach sites. Eventually, the peat layer is completely eroded from the channel floor by undercutting and slumping, after which channel shape becomes governed mainly by other perimeter characteristics. Channels unaffected by peat, either before the peat layer is encountered during early channel development or after it is entirely removed, tend to have low width/depth ratios and a large range of D/Dmax values.  相似文献   
24.
25.
26.
Late Quaternary alluvial induration has greatly influenced contemporary channel morphology on the anabranching Gilbert River in the monsoon tropics of the Gulf of Carpentaria. The Gilbert, one of a number of rivers in this region, has contributed to an extensive system of coalescing low-gradient and partly indurated riverine plains. Extensive channel sands were deposited by enhanced flow conditions during marine oxygen isotope (OI) Stage 5. Subsequent flow declined, probably associated with increased aridity, however, enhanced runoff recurred again in OI Stages 4–3 (65–50 ka). Aridity then capped these plains with 4–7 m of mud. A widespread network of sandy distributary channels was incised into this muddy surface from sometime after the Last Glacial Maximum (LGM) to the mid Holocene during a fluvial episode more active than the present but less so than those of OI Stages 5 and 3. This network is still partly active but with channel avulsion and abandonment now occurring largely proximal to the main Gilbert flow path.A tropical climate and reactive catchment lithology have enhanced chemical weathering and lithification of alluvium along the river resulting in the formation of small rapids, waterfalls and inset gorges, features characteristic more of bedrock than alluvial systems. Thermoluminescence (TL) and comparative optically stimulated luminescence (OSL) ages of the sediments are presented along with U/Th ages of pedogenic calcrete and Fe/Mn oxyhydroxide/ oxide accumulations. They show that calcrete precipitated during the Late Quaternary at times similar to those that favoured ferricrete formation, possibly because of an alternating wet–dry climate. Intense chemical alteration of the alluvium leading to induration appears to have prevailed for much of the Late Quaternary but, probably due to exceptional dryness, not during the LGM. The result has been restricted channel migration and a reduced capacity for the channel to adjust and accommodate sudden changes in bedload. Consequent avulsions have caused local stream powers to increase by an order of magnitude, inducing knickpoint erosion, local incision and the sudden influx of additional bedload that has triggered further avulsions. The Gilbert River, while less energetic than its Pleistocene ancestors, is clearly an avulsive system, and emphasizes the importance in some tropical rivers of alluvial induration for reinforcing the banks, generating nickpoints, reworking sediment and thereby developing and maintaining an indurated and anabranching river style.  相似文献   
27.
28.
斜向扩张是超慢速扩张洋中脊独特的构造特征,其地形分段特征明显区别于经典的快速-慢速端元洋中脊模型,是理解超慢速扩张洋中脊地质过程的重要切入点.基于西南印度洋中脊Indomed-Gallieni和Shaka-DuToit段多波束地形数据,分析了不同斜向扩张角度(α)洋中脊的地形分段样式.其中,46.5°~47.5°E(α...  相似文献   
29.
Geodynamic Information in Peridotite Petrology   总被引:12,自引:1,他引:12  
HERZBERG  CLAUDE 《Journal of Petrology》2004,45(12):2507-2530
Systematic differences are observed in the petrology and majorelement geochemistry of natural peridotite samples from thesea floor near oceanic ridges and subduction zones, the mantlesection of ophiolites, massif peridotites, and xenoliths ofcratonic mantle in kimberlite. Some of these differences reflectvariable temperature and pressure conditions of melt extraction,and these have been calibrated by a parameterization of experimentaldata on fertile mantle peridotite. Abyssal peridotites are examplesof cold residues produced at oceanic ridges. High-MgO peridotitesfrom the Ronda massif are examples of hot residues producedin a plume. Most peridotites from subduction zones and ophiolitesare too enriched in SiO2 and too depleted in Al2O3 to be residues,and were produced by melt–rock reaction of a precursorprotolith. Peridotite xenoliths from the Japan, Cascades andChile–Patagonian back-arcs are possible examples of arcprecursors, and they have the characteristics of hot residues.Opx-rich cratonic mantle is similar to subduction zone peridotites,but there are important differences in FeOT. Opx-poor xenolithsof cratonic mantle were hot residues of primary magmas with16–20% MgO, and they may have formed in either ancientplumes or hot ridges. Cratonic mantle was not produced as aresidue of Archean komatiites. KEY WORDS: peridotite; residues; fractional melting; abyssal; cratonic mantle; subduction zone; ophiolite; potential temperature; plumes; hot ridges  相似文献   
30.
Geomorphic effects observed in the Barranco (creek) de Arás basin are used to characterize the flood. Sediment features allow to qualify the flood as essentially a water flow. Using the critical section method, the peak flood discharge is estimated to be between 400 and 600 m3 s−1. Similar results were obtained using a paleohydraulic formula based on the size of the largest mobilized clasts. Using the rational method with available rainfall data, the discharge for a recurrence interval of 500 years is estimated to be between 150 and 200 m3 s−1. These results agree with predictions obtained using curves of peak discharge versus basin area based on regional data. Several trenches dug on the fan showed that the size of boulders mobilized by the event is larger that those left by previous floods at the same place. When the estimated peak flood discharge is related to the basin area, values between 20 and 30 m3 s−1 km−2 are obtained, demonstrating that the Barranco de Arás flood was most unusual.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号