首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1796篇
  免费   20篇
  国内免费   142篇
测绘学   62篇
大气科学   116篇
地球物理   454篇
地质学   1010篇
海洋学   138篇
天文学   50篇
自然地理   128篇
  2024年   20篇
  2023年   68篇
  2022年   49篇
  2021年   70篇
  2020年   164篇
  2019年   96篇
  2018年   120篇
  2017年   179篇
  2016年   113篇
  2015年   133篇
  2014年   231篇
  2013年   357篇
  2012年   215篇
  2011年   5篇
  2010年   9篇
  2009年   9篇
  2008年   1篇
  2007年   8篇
  2006年   10篇
  2005年   16篇
  2004年   18篇
  2003年   11篇
  2002年   22篇
  2001年   7篇
  2000年   6篇
  1999年   1篇
  1998年   4篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1984年   1篇
  1983年   2篇
  1979年   1篇
排序方式: 共有1958条查询结果,搜索用时 15 毫秒
991.
A first-order formulation to analyze the dynamic response of layered soil profiles is presented as an alternative to the widely used second-order thin-layer method by the direct stiffness approach, including an efficient simulation of the underlaying elastic half-space. In contrast to the thin-layer method where response is expressed through a combination of second-order propagation modes, the proposed procedure uses first-order modal parameters that have the capacity to provide a good approximation in the complete wave number domain k, including the exact stiffness values for k=0 and k→∞, thus justifying its designation of doubly-asymptotic. This feature allows obtaining the exact soil profile response for static loads, while the proposed treatment of the elastic half-space reproduces naturally the radiation condition without a need of artificial damping. The capacity of the proposed formulation to solve elastodynamic problems is assessed by comparing its results with those of exact solutions available in the literature, and numerical solutions of rigid disks supported on the surface of different soil profiles.  相似文献   
992.
Railway induced vibrations and re-radiated noise in buildings can be mitigated by means of wave barriers in the soil. Numerical simulations demonstrate that a stiff wave barrier, consisting of a material that is stiffer than the surrounding medium, can be very effective if the stiffness contrast between the barrier and the medium is sufficiently large. This paper presents results of a lab experiment that has been carried out to validate these findings, using gelatine instead of soil in order to reduce the wavelengths and thus the scale of the test setup. An expanded polystyrene beam is employed as wave barrier, while a non-contact measurement procedure is applied for visualizing the waves in the gelatine, based on reflections of a grid of laser rays. The experimental results are found to be in line with the numerical predictions, confirming the vibration reduction effectiveness of stiff wave barriers.  相似文献   
993.
Along the Central Andes a pattern of vertical axis rotations has been paleomagnetically identified. Such rotations are counterclockwise north of Arica Deflection (∼19° S) and clockwise to the south. Different hypothesis and models have been proposed to explain the Central Andean Rotation Pattern (CARP). However, the origin of the CARP is a subject of ongoing debate. Recently, different authors have proposed the possible existence of a close correlation between the time–space distribution of deformation and the amount of registered vertical axis rotations in the Southern Central Andes. In order to further investigate such relationship, new paleomagnetic studies were carried out in Upper Oligocene–Lower Miocene rocks of the Northern Argentine Puna and the Southern Bolivian Altiplano. Our results indicate that while one of the sampled localities did not undergo significant vertical axis rotations, the other two recorded clockwise vertical axis rotations larger than 30°. These results suggest the occurrence of small-block rotations in the Southern Bolivian Altiplano–Northern Argentine Puna prior to 15 Ma, which would correspond to the local accommodation of the regional deformation field.  相似文献   
994.
E. Morin  H. Yakir 《水文科学杂志》2014,59(7):1353-1362
Abstract

t Spatio-temporal storm properties have a large impact on catchment hydrological response. The sensitivity of simulated flash floods to convective rain-cell characteristics is examined for an extreme storm event over a 94 km2 semi-arid catchment in southern Israel. High space–time resolution weather radar data were used to derive and model convective rain cells that then served as input into a hydrological model. Based on alterations of location, direction and speed of a major rain cell, identified as the flooding cell for this case, the impacts on catchment rainfall and generated flood were examined. Global sensitivity analysis was applied to identify the most important factors affecting the flash flood peak discharge at the catchment outlet. We found that the flood peak discharge could be increased three-fold by relatively small changes in rain-cell characteristics. We assessed that the maximum flash flood magnitude that this single rain cell can produce is 175 m3/s, and, taking into account the rest of the rain cells, the flash flood peak discharge can reach 260 m3/s.
Editor Z.W. Kundzewicz; Guest editor R.J. Moore

Citation Morin, E. and Yakir, H., 2013. Hydrological impact and potential flooding of convective rain cells in a semi-arid environment. Hydrological Sciences Journal, 59 (7), 1275–1284. http://dx.doi.org/10.1080/02626667.2013.841315  相似文献   
995.
From the literature, we found that PGV–PD3 regressions for on-site earthquake early warning (EEW) can be quite different depending on the presumption whether or not PGV–PD3 data from different regions should be “mixable” in regression analyses. As a result, this becomes a source of epistemic uncertainty in the selection of a PGV–PD3 empirical relationship for on-site EEW. This study is aimed at examining the influence of this epistemic uncertainty on EEW decision-making, and demonstrating it with an example on the use of PGV–PD3 models developed with data from Taiwan, Japan, and Southern California. The analysis shows that using the “global” PGV–PD3 relationship for Southern California would accompany a more conservative EEW decision-making (i.e., early warning is activated more frequently) than using the local empirical model developed with the PGV–PD3 data from Southern California only. However, the influence of this epistemic uncertainty on EEW is not that obvious for the cases of Taiwan and Japan.  相似文献   
996.
The dynamic analysis of a surface rigid foundation in smooth contact with a transversely isotropic half-space under a buried inclined time-harmonic load is addressed. By virtue of the superposition technique, appropriate Green׳s functions, and employing further mathematical techniques, solution of the mixed-boundary-value problem is expressed in terms of two well-known Fredholm integral equations. Two limiting cases of the problem corresponding to the static loading and isotropic medium are considered and the available results in the literature are fully recovered. For the static case, the results pertinent to both frictionless and bonded contacts are obtained and compared. With the aid of the residue theorem and asymptotic decomposition method, an effective and robust approach is proposed for the numerical evaluation of the obtained semi-infinite integrals. For a wide range of the excitation frequency, both normal and rotational compliances are depicted in dimensionless plots for different transversely isotropic materials. Based on the obtained results, the effects of anisotropy are highlighted and discussed.  相似文献   
997.
Dynamic response of a flexible cantilever wall retaining elastic soil to harmonic transverse seismic excitations is determined with the aid of a modified Vlasov–Leontiev foundation model and on the assumption of vanishing vertical displacement of the soil medium. The soil–wall interaction is taken into consideration in the presented model. The governing equations and boundary conditions of the two unknown coupled functions in the model are derived in terms of Hamilton׳s principle. Solutions of the two unknown functions are obtained on the basis of an iterative algorithm. The present method is verified by comparing its results with those of the existing analytical solution. Moreover, a mechanical model is proposed to evaluate the presented method physically. A parametric study is performed to investigate the effects of the soil–wall system properties and the excitations on the dynamic response of the wall.  相似文献   
998.
In this paper the effects of deep excavation on seismic vulnerability of existing buildings are investigated. It is well known that deep excavations induce significant changes both in stress and strain fields of the soil around them, causing a displacement field which can modify both the static and dynamic responses of existing buildings. A FEM model of a real case study, which takes into account geometry, non-linear soil behavior, live and dead loads, boundary conditions and soil–structure interaction, has been developed in order to estimate the soil displacements and their effects on seismic behavior of a reinforced concrete framed system close to deep excavation. Considering a significant accelerometric seismic input, the non-linear dynamic responses of the reinforced concrete framed structure, both in the pre and post-excavation configurations, have been evaluated and, then, compared to estimate the modification in seismic vulnerability, by means of different seismic damage indices and inter-story drifts.  相似文献   
999.
1000.
In porous media, the dynamics of the invading front between two immiscible fluids is often characterized by abrupt reconfigurations caused by local instabilities of the interface. As a prototype of these phenomena we consider the dynamics of a meniscus in a corner as it can be encountered in angular pores. We investigate this process in detail by means of direct numerical simulations that solve the Navier–Stokes equations in the pore space and employ the Volume of Fluid method (VOF) to track the evolution of the interface. We show that for a quasi-static displacement, the numerically calculated surface energy agrees well with the analytical solutions that we have derived for pores with circular and square cross sections. However, the spontaneous reconfigurations are irreversible and cannot be controlled by the injection rate: they are characterized by the amount of surface energy that is spontaneously released and transformed into kinetic energy. The resulting local velocities can be orders of magnitude larger than the injection velocity and they induce damped oscillations of the interface that possess their own time scales and depend only on fluid properties and pore geometry. In complex media (we consider a network of cubic pores) reconfigurations are so frequent and oscillations last long enough that increasing inertial effects leads to a different fluid distribution by influencing the selection of the next pore to be invaded. This calls into question simple pore-filling rules based only on capillary forces. Also, we demonstrate that inertial effects during irreversible reconfigurations can influence the work done by the external forces that is related to the pressure drop in Darcy’s law. This suggests that these phenomena have to be considered when upscaling multiphase flow because local oscillations of the menisci affect macroscopic quantities and modify the constitutive relationships to be used in macro-scale models. These results can be extrapolated to other interface instabilities that are at the origin of fast pore-scale events, such as Haines jumps, snap-off and coalescence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号