首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2028篇
  免费   267篇
  国内免费   143篇
测绘学   140篇
大气科学   61篇
地球物理   494篇
地质学   372篇
海洋学   298篇
天文学   6篇
综合类   154篇
自然地理   913篇
  2024年   17篇
  2023年   43篇
  2022年   105篇
  2021年   145篇
  2020年   99篇
  2019年   88篇
  2018年   77篇
  2017年   97篇
  2016年   90篇
  2015年   90篇
  2014年   103篇
  2013年   95篇
  2012年   132篇
  2011年   149篇
  2010年   112篇
  2009年   127篇
  2008年   153篇
  2007年   120篇
  2006年   140篇
  2005年   99篇
  2004年   94篇
  2003年   74篇
  2002年   39篇
  2001年   30篇
  2000年   27篇
  1999年   22篇
  1998年   12篇
  1997年   15篇
  1996年   14篇
  1995年   7篇
  1994年   6篇
  1993年   4篇
  1992年   6篇
  1991年   1篇
  1990年   5篇
  1985年   1篇
排序方式: 共有2438条查询结果,搜索用时 15 毫秒
51.
Dams are a major source of fragmentation and degradation of rivers. Although substantial research has been conducted on the environmental impacts of large structures in the United States, smaller dams have received less attention. This study evaluated the impact of two dams of moderate size, the Elwha Dams, on the downstream channel system using field data collection at river cross‐sections. The relationship of average boundary shear stress (τo) to critical shear stress (τcr) served as the basis for determining channel bed material mobility under the two‐year and ten‐year flood events. The channel had the greatest channel bed mobility at the natural cross‐section upstream from the dams, low bed mobility between the structures, and an increase in channel bed mobility in the low gradient river segment near the mouth of the river. Low bed mobility tended to be associated with a lack of channel system complexity, including reduction or loss of bars and low alluvial terraces and their associated young riparian communities. Although these run‐of‐the‐river dams do not modify streamflow greatly, the loss of sediment from the channel system has had a substantial impact on bed mobility and geomorphic and biotic complexity of the Elwha River.  相似文献   
52.
Throughout Australia thousands of volunteers are engaged in Landcare projects that should help rehabilitate degraded landscapes. Many of these projects involve tree planting, but their seed is not necessarily of local provenance. Based on a survey of 85 Landcare groups working in the Hawkesbury–Nepean catchment, data were collected about Landcare groups' knowledge of their seed source, understanding of local provenance and the ecosystem in which they were planting trees and the source of funding for their projects. The findings from the study indicate that about one in five (21%) of the groups surveyed that introduced plant material were not aware of local provenance issues. Indirect indications were that a large number of Landcare groups state-wide may be doing more harm than good to the landscape while trying to rehabilitate it. The data also showed that one in seven (13%) of the groups funded by the Australian Government through the Natural Heritage Trust (NHT) had limited awareness of local provenance issues. With millions of dollars being spent on 'works on the ground', it would be prudent to allocate some funds to document and monitor current Landcare activities, so that the environmental outcomes can be quantified and more effective Landcare policies can be developed in the future.  相似文献   
53.
通过样方法及植被调查法,从纵向和横向两个不同方向对工程破坏后的沙地植被进行比较研究。在纵向上,由于植被恢复时间的不同,其恢复的程度也不同。植被恢复状况可明显的分3个阶段:定居前期(1~6a)主要以多年生羽叶三芒草和小半灌木绢蒿为主;中期(7~11a)主要以多年生小半灌木青杆沙蒿为主;后期(12~16a)主要生长着多年生麻黄及草本沙苔,地表出现大面积的生物结皮。在横向上,将恢复后期的植被与原始植被进行比较。通过对植被发育不同阶段过程中物种重要值、物种多样性、丰富度及生活型的变化等方面的调查,发现在不同阶段,各物种的重要值发生了不同的变化,物种多样性指数,均匀度指数,丰富度指数到后期均增大。  相似文献   
54.
基于"3S"技术的于田绿洲湿地动态变化研究   总被引:7,自引:4,他引:7  
以极端干旱区典型绿洲———于田绿洲为研究区,采用遥感(RS)、地理信息系统(GIS)和全球定位系统(GPS)相结合的方法,进行了湿地资源调查,查明了于田绿洲湿地类型、区域分布及面积,应用模型和分形理论,探讨了于田绿洲湿地的动态变化特征,并分析了其发生动态变化的原因。研究结果对于干旱区绿洲湿地的合理开发和可持续发展有着重要现实意义。  相似文献   
55.
Oil sands mining in Alberta transforms the boreal landscape of forests and wetlands into open pits, tailings ponds and overburden piles. Whereas reclamation efforts have primarily focused on upland forests, rebuilding wetland systems has recently become a motivation for research. Wetland creation and sustainability in this region is complicated by the sub‐humid climate and salinity of underlying mining material. In 2012, Syncrude Canada Ltd. completed the construction of the Sandhill Fen Watershed (SFW), a 52‐ha upland‐wetland system to evaluate wetland reclamation strategies on soft tailings. SFW includes an active pumping system, upland hummocks, a fen wetland and underdrains. To evaluate the influence of management practices on the hydrology of the system, this study reports the water balance from January 2013 to December 2014, the first 2 years after commissioning. A semi‐distributed approach was taken to examine the fluxes and stores of water in uplands and lowlands. Natural and artificial inputs and outputs were measured using a series of precipitation gauges and pumps, and evapotranspiration was quantified using three eddy covariance towers. A series of near surface wells recorded water table position. Both 2013 and 2014 were normal rainfall years, with 2013 having more and 2014 less snow than normal. In 2013, inflow/outflow from pumping was the predominant hydrological fluxes, resulting in considerable variability in water table position and storage changes throughout the summer. In 2014, the artificial addition of water was negligible, yet the water table remained near the surface in lowland locations, suggesting that wetland conditions could be maintained under current conditions. Evapotranspiration rates between uplands and lowlands were similar between years and sites, ranging from 2.2 ± 1.8 to 2.5 ± 1.2 mm/day and were largely controlled by climate. These rates were less than nearby older upland systems, suggesting that water balance partitioning will change as vegetation develops. Comparison between years and with natural systems provides insight on how management practices influence hydrologic dynamics and the overall water balance of the SFW. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
56.
Soil moisture is essential for vegetation restoration in arid and semi-arid regions. Ascertaining the vertical distribution and transportation of soil moisture under different vegetation types has a profound effect on the ecological construction. In this study, the soil moisture at a depth of 500 cm for four typical vegetation types, including Robinia pseudoacacia, Caragana korshinskii, Stipa bungeana, and corn, were investigated and compared in the Zhifanggou watershed of the Loess plateau. Additionally, hydrogen and oxygen stable isotopes were detected to identify the transport mechanism of soil moisture. The results showed vertical distribution and transportation of soil moisture were different under different vegetation types. Depth-averaged soil moisture under S. bungeana and corn generally increased along the profile, while C. korshinskii and R. pseudoacacia showed weakly increasing and relatively stable after an obvious decreasing trend (0–40 cm). The soil moisture under R. pseudoacacia was lower than that under other vegetation types, especially in deep layer. However, the effect of R. pseudoacacia on soil moisture in the topsoil (< 30 cm) could be positive. For R. pseudoacacia (160–500 cm), C. korshinskii (0–500 cm), and S. bungeana (0–100 cm), the soil moisture declined with increased in vegetation age. Planting arbor species such as R. pseudoacacia intensified the decline of soil moisture on the Loess Plateau. The capacity of evaporation fractionation of soil moisture followed the sequence: corn > S. bungeana > R. pseudoacacia > C. korshinskii. The δ18O values in soil water fluctuated across the profile. The δ18O values changed sharply in upper layer and generally remained stable in deep layer. However, in middle layer, the vertical distribution characteristics of the δ18O values were different under different vegetation types. We estimated that piston flow was the main mode of precipitation infiltration, and the occurrence of preferential flow was related to vegetation types. These results were helpful to improve the understanding of the response of deep soil moisture to vegetation restoration and inform practices for sustainable water management.  相似文献   
57.
Reflecting internal catchment hydrological processes in hydrological models is important for accurate predictions of the impact of climate and land-use change on water resources. Characterizing these processes is however difficult and expensive due to their dynamic nature and spatio-temporal variability. Hydropedology is a relatively new discipline focusing on the synergistic integration of hydrology, soil physics and pedology. Hydropedological interpretations of soils and soil distribution can be used to characterize key hydrological processes, especially in areas with no or limited hydrometric measurements. Here we applied a hydropedological approach to reflect flowpaths through detailed routing in SWAT+ for a 157 ha catchment (Weatherley) in South Africa. We compared the hydropedological approach and a standard (no routing) approach against measured streamflow (two weirs) and soil water contents (13 locations). The catchment was treated as ‘ungauged’ and the model was not calibrated against hydrometric measurements in order to determine the direct contribution of hydropedology on modelling efficiency. Streamflow was predicted well without calibration (NSE > 0.8; R2 > 0.82) for both approaches at both weirs. The standard approach yielded slightly better streamflow predictions. The hydropedological approach resulted in considerable improvements in the simulation of soil water contents (R2 increased from 0.40 to 0.49 and PBIAS decreased from 40% to 20%). The routing capacity of SWAT+ as employed in the hydropedological approach reduced the underestimation of wetland water regimes drastically and resulted in a more accurate representation of the dominant hydrological processes in this catchment. We concluded that hydropedology can be a valuable source of ‘soft data’ to reflect internal catchment structure and processes and, potentially, for realistic calibrations in other studies, especially those conducted in areas with limited hydrometric measurements.  相似文献   
58.
Tim P. Duval 《水文研究》2019,33(11):1510-1524
Partitioning of rainfall through a forest canopy into throughfall, stemflow, and canopy interception is a critical process in the water cycle, and the contact of precipitation with vegetated surfaces leads to increased delivery of solutes to the forest floor. This study investigates the rainfall partitioning over a growing season through a temperate, riparian, mixed coniferous‐deciduous cedar swamp, an ecosystem not well studied with respect to this process. Seasonal throughfall, stemflow, and interception were 69.2%, 1.5%, and 29.3% of recorded above‐canopy precipitation, respectively. Event throughfall ranged from a low of 31.5 ± 6.8% for a small 0.8‐mm event to a high of 82.9 ± 2.4% for a large 42.7‐mm event. Rain fluxes of at least 8 mm were needed to generate stemflow from all instrumented trees. Most trees had funnelling ratios <1.0, with an exponential decrease in funnelling ratio with increasing tree size. Despite this, stand‐scale funnelling ratios averaged 2.81 ± 1.73, indicating equivalent depth of water delivered across the swamp floor by stemflow was greater than incident precipitation. Throughfall dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) averaged 26.60 ± 2.96 and 2.02 ± 0.16 mg L?1, respectively, which were ~11 and three times above‐canopy rain levels. Stemflow DOC averaged 73.33 ± 7.43 mg L?1, 35 times higher than precipitation, and TDN was 4.45 ± 0.56 mg L?1, 7.5 times higher than rain. Stemflow DOC concentration was highest from Populus balsamifera and TDN greatest from Thuja occidentalis trees. Although total below‐canopy flux of TDN increased with increasing event size, DOC flux was greatest for events 20–30 mm, suggesting a canopy storage threshold of DOC was readily diluted. In addition to documenting rainfall partitioning in a novel ecosystem, this study demonstrates the excess carbon and nitrogen delivered to riparian swamps, suggesting the assimilative capacity of these zones may be underestimated.  相似文献   
59.
Amount and composition of dissolved organic matter (DOM) were evaluated for multiple, nested stream locations in a forested watershed to investigate the role of hydrologic flow paths, wetlands and drainage scale. Sampling was performed over a 4‐year period (2008–2011) for five locations with drainage areas of 0.62, 3.5, 4.5, 12 and 79 ha. Hydrologic flow paths were characterized using an end‐member mixing model. DOM composition was determined using a suite of spectrofluorometric indices and a site‐specific parallel factor analysis model. Dissolved organic carbon (DOC), humic‐like DOM and fluorescence index were most sensitive to changes with drainage scale, whereas dissolved organic nitrogen, specific UV absorbance, Sr and protein‐like DOM were least sensitive. DOM concentrations and humic‐like DOM constituents were highest during both baseflow and stormflow for a 3.5‐ha catchment with a wetland near the catchment outlet. Whereas storm‐event concentrations of DOC and humic DOM constituents declined, the mass exports of DOC increased with increasing catchment scale. A pronounced dilution in storm‐event DOC concentration was observed at peak stream discharge for the 12‐ha drainage location, which was not as apparent at the 79‐ha scale, suggesting key differences in supply and transport of DOM. Our observations indicate that hydrologic flow paths, especially during storms, and the location and extent of wetlands in the catchment are key determinants of DOM concentration and composition. This study furthers our understanding of changes in DOM with drainage scale and the controls on DOM in headwater, forested catchments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
60.
The restoration of meadowland using the pond and plug technique of gully elimination was performed in a 9‐mile segment along Last Chance Creek, Feather River Basin, California, in order to rehabilitate floodplain functions such as mitigating floods, retaining groundwater, and reducing sediment yield associated with bank erosion and to significantly alter the hydrologic regime. However, because the atmospheric and hydrological conditions have evolved over the restoration period, it was difficult to obtain a comprehensible evaluation of the impact of restoration activities by means of field measurements. In this paper, a new use of physically based models for environmental assessment is described. The atmospheric conditions over the sparsely gauged Last Chance Creek watershed (which does not have any precipitation or weather stations) during the combined historical critical dry and wet period (1982–1993) were reconstructed over the whole watershed using the atmospheric fifth‐generation mesoscale model driven with the US National Center for Atmospheric Research and US National Center for Environmental Prediction reanalysis data. Using the downscaled atmospheric data as its input, the watershed environmental hydrology (WEHY) model was applied to this watershed. All physical parameters of the WEHY model were derived from the existing geographic information system and satellite‐driven data sets. By comparing the prerestoration and postrestoration simulation results under the identical atmospheric conditions, a more complete environmental assessment of the restoration project was made. Model results indicate that the flood peak may be reduced by 10–20% during the wet year and the baseflow may be enhanced by 10–20% during the following dry seasons (summer to fall) in the postrestoration condition. The model results also showed that the hydrologic impact of the land management associated with the restoration mitigates bank erosion and sediment discharge during winter storm events. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号