首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   431篇
  免费   22篇
  国内免费   74篇
大气科学   1篇
地球物理   166篇
地质学   308篇
海洋学   23篇
天文学   2篇
综合类   3篇
自然地理   24篇
  2024年   3篇
  2023年   4篇
  2022年   4篇
  2021年   8篇
  2020年   9篇
  2019年   5篇
  2018年   12篇
  2017年   13篇
  2016年   12篇
  2015年   5篇
  2014年   11篇
  2013年   33篇
  2012年   23篇
  2011年   5篇
  2010年   6篇
  2009年   27篇
  2008年   46篇
  2007年   25篇
  2006年   33篇
  2005年   25篇
  2004年   29篇
  2003年   20篇
  2002年   20篇
  2001年   13篇
  2000年   20篇
  1999年   18篇
  1998年   19篇
  1997年   14篇
  1996年   15篇
  1995年   9篇
  1994年   12篇
  1993年   8篇
  1992年   2篇
  1991年   3篇
  1990年   3篇
  1989年   3篇
  1988年   3篇
  1987年   4篇
  1986年   1篇
  1985年   1篇
  1978年   1篇
排序方式: 共有527条查询结果,搜索用时 0 毫秒
521.
We report new age determinations and compositions for rocks from 18 dredge hauls collected from eight submarine areas across Central Kerguelen Plateau (CKP). Sea knolls and volcanic fields with multiple small cones were targeted over a ~125 000 km2 region that includes Heard and McDonald Islands. Large early Miocene (22–16 Ma) sea knolls rise from the western margin of the CKP and are part of a NNW–SSE line of volcanic centres that lie between Îles Kerguelen and Heard and McDonald Islands. These are probably related to hotspot activity now underlying the Heard Island area. We see evidence of much younger activity (5 Ma to present) in volcanic fields to the north of, and up to 300 km NE of, Heard Island. Compositions include basanite, basalt and trachybasalt, which are broadly similar to plateau lava flows from nearby Ocean Drilling Program Site 1138, lower Miocene lavas at Îles Kerguelen, dredged rocks from the early Miocene sea knolls, and Big Ben lavas from Heard Island. Geochemical data indicate decreasing fractions of mantle source melting with time. We propose that a broad region of the CKP became volcanically active in Neogene time owing to incubation of plume material at the base of the relatively stationary overlying plateau. The presence of pre-existing crustal faults gave access for melts from the Heard mantle plume to rise to the surface.  相似文献   
522.
We report new Nd, Hf, Sr, and high-precision Pb isotopic data for 44 lava and tephra samples from Erebus volcano. The samples cover the entire compositional range from basanite to phonolite and trachyte, and represent all three phases of the volcanic evolution from 1.3 Ma to the present. Isotopic analyses of 7 samples from Mt. Morning and the Dry Valley Drilling Project (DVDP) are given for comparison. The Erebus volcano samples have radiogenic 206Pb/204Pb, unradiogenic 87Sr/86Sr, and intermediate 143Nd/144Nd and 176Hf/177Hf, and lie along a mixing trajectory between the two end-member mantle components DMM and HIMU. The Erebus time series data show a marked distinction between the early-phase basanites and phonotephrites, whose Nd, Hf, Sr, and Pb isotope compositions are variable (particularly Pb), and the current ‘phase-three’ evolved phonolitic lavas and bombs, whose Nd, Hf, Sr, and Pb isotope compositions are essentially invariant. Magma mixing is inferred to play a fundamental role in establishing the isotopic and compositional uniformity in the evolved phase-three phonolites. In-situ analyses of Pb isotopes in melt inclusions hosted in an anorthoclase crystal from a 1984 Erebus phonolite bomb and in an olivine from a DVDP basanite are uniform and identical to the host lavas within analytical uncertainties. We suggest that, in both cases, the magma was well mixed at the time melt inclusions were incorporated into the different mineral phases.  相似文献   
523.
镜泊湖全新世火山研究成果概述   总被引:2,自引:0,他引:2  
本文从火山口的形态、分布、火山喷发时代、火山基浪堆积物及火山成因类型等方面概述镜泊湖全新世火山研究成果,指出该火山活动时间为距今5200~5500年,在该火山碎屑物中发现有火山基浪堆积物,该火山成因类型属于单成因火山。  相似文献   
524.
In the Gondwanian Moesia Plate and Balkanid terranes, accreted to the Palaeo-Europe during the Palaeozoic, the Late Permian—Early Triassic unconformity and the Triassic system are known only from deep boreholes. In the Chiren, Veslets and Golyamo Peshtene regions (Northern Bulgaria), an Early Triassic igneous activity results from eleven drills.

Trachytes, outpoured from sub aerial to shallow sea submarine vents, and later basalt breccias emplaced in shallow water conditions, represent the bimodal volcanic products.

The transitional anorogenic features of the volcanism are consistent with the extensional regime evidenced by the progressively subsiding depositional environment. The extensional Triassic event corresponds to development of branches of a composite rift system, propagating from the Karakaya basin to separate the Moesia with Balkanids p.p. and the Istanbul block to the North, from the Serbian— Macedonian—Thracian microplate with Balkanid p.p. to the south.  相似文献   
525.
This study aims to contribute a possible explanation for magma migration within volcanoes located in contractional tectonic settings, based on field data and physically-scaled experiments. The data demonstrate the occurrence of large stratovolcanoes in areas of coeval reverse faulting, in spite of the widely accepted idea that volcanism can develop only in extensional/transcurrent tectonic settings. The experiments simulate the propagation of deformation from substrate reverse faults with different attitudes and locations into volcanoes. The substrate fault splits into two main shear zones within the volcano: A shallow-dipping one, with reverse motion, propagates towards the lower volcano flank, and a steeper-dipping one, with normal motion, propagates upwards. In plan view, the reverse fault zone is arcuate and convex outwards, whereas the normal fault zone is rectilinear. Structural field surveys at volcanoes located in contractional settings show similar features: The Plio–Quaternary Trohunco and Los Cardos–Centinela volcanic complexes (Argentina) lie above Plio–Quaternary reverse faults. The Late Pleistocene–Holocene El Reventador volcano (Ecuador) is also located in a coeval contractional tectonic belt. These volcanoes show curvilinear reverse faults along one flank and rectilinear extensional fracture zones across the crater area, consistent with the experiments. These data consistently suggest that magma migrates along the substrate reverse fault and is channelled along the normal fault zone across the volcano.  相似文献   
526.
Abstract: Neogene magmatism in the Muka mine area in the Kitami metallogenic province was characterized on the basis of K-Ar age data by felsic–to–mafic terrestrial extrusive and intrusive volcanism from Late Miocene to Early Pliocene. The geology of the Muka mine area comprises the Upper Cretaceous-Paleocene Yubetsu Group, consisting primarily of sandstone and shale; Upper Miocene Ikutahara Formation, consisting of clastic and felsic volcaniclastic rocks and Kane-hana Lava (rhyolite) of 7. 5 Ma; Upper Miocene Yahagi Formation, consisting of clastics, felsic volcaniclastics and rhyolite lavas; Late Miocene andesite and rhyolite dikes (Chidanosawa Rhyolite of 7. 2 Ma and Hon-Mukagawa Andesite of 6. 6 Ma); Lower Pliocene Hakugindai Lava (basalt: 4. 0 Ma); and Quaternary System. The volcanism consists of earlier Late Miocene felsic extrusive activity during the sedimentation of the Ikutahara Formation, later Late Miocene felsic extrusive and intrusive activities during the sedimentation of the Yahagi Formation and intermediate intrusive activity after the sedimentation of the Yahagi Formation and Early Pliocene mafic extrusive activity. The Muka gold-silver ore deposit occurs primarily in the felsic volcaniclastic rocks and Kanehana Lava of the Ikutahara Formation and in Hon-Mukagawa Andesite. These wall–rocks, the clastic rocks of the Ikutahara Formation and the clastic and felsic volcaniclastic rocks of the Yahagi Formation were affected to various extents by hydrothermal alteration. The hydrother-mal alteration can be divided into two stages (early and late) based on the modes of occurrence and mineral assemblages. Early hydrothermal alteration is characterized by regional and vein-related alterations associated with epithermal gold-silver mineralization in a near-neutral hydrothermal system. Regional alteration can be subdivided into a zeolite zone (mordenite+adularia±heulandite–clinoptilolite series mineral±smectite±quartz°Cristobalite±opal–CT) and a smectite zone (smec–tite±quartz±opal–CT). Vein-related alteration can be subdivided into a K-feldspar zone (quartz+adularia±illite±interstratified illite/smectite±pyrite), an illite zone (quartz+illite°Chlorite±interstratified illite/smectite±smectite±pyrite) and an interstratified illite/smectite zone (quartz+interstratified illite/smectite±smectite±pyrite). The adularization age of 6. 8 Ma in the K-feldspar zone that developed in Kanehana Lava hosting ore veins coincides well with the epithermal gold-silver mineralization age of 6. 6 Ma. Late hydrothermal alteration is characterized by a kaolinite zone (kaolinite±dickite±alunite±quartz°Cristobalite± tridymite±pyrite) in an acid hydrothermal system, and cuts early alteration zones such as the K-feldspar zone. Other modes of occurrence of acid alteration are a 7Å halloysite-kaolinite vein in the hydrothermal explosion breccia dike and smectite–kaoli–nite veins along joint planes of Kanehana Lava. The style of the gold-silver deposit associated with early near-neutral hydrothermal alteration is a low-sulfidation epithermal type. The low-sulfidation epithermal gold-silver mineralization of 6. 6 Ma in the vicinity of the Muka ore deposit was essentially accompanied by felsic volcanic activity during the sedimentation of the Yahagi Formation, and was closely related both temporally and spatially to the felsic intrusive activity of Chidanosawa Rhyolite of 7. 2 Ma. The related hydrother-mal activity of the gold-silver mineralization took place at intervals of approximately 0. 4–0. 6 Ma after the volcanic activity related to the mineralization.  相似文献   
527.
In the deep subsurface of the northeast German basin products of extensive volcanism are present that formed during the waning phase of the Variscan orogeny (Permian–Carboniferous boundary). Large volumes (≥48,000 km3) of dominantly felsic magma were emplaced in the northern foreland of the Variscan mountains in a terrestrial semi-arid environment. Most of these units were inferred by previous authors to represent the products of explosive volcanic eruptions such as ignimbrites. However, a detailed analysis of the volcanic texture and lithofacies association shows that most units are best interpreted as coherent lavas emplaced either as extrusive units or as shallow intrusions, with important implications for the reconstruction of the paleo-environment. This study shows that detailed textural examination of drill cores provide important observations, which can be applied as criteria for the interpretation of the mode of volcanic eruptions. Furthermore, phenocryst logging and geochemical fingerprinting based on immobile element ratios can be employed for the classification and discrimination of individual emplacement units.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号