首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   256篇
  免费   63篇
  国内免费   75篇
测绘学   3篇
大气科学   19篇
地球物理   139篇
地质学   162篇
海洋学   54篇
综合类   6篇
自然地理   11篇
  2024年   6篇
  2023年   2篇
  2022年   1篇
  2021年   9篇
  2020年   15篇
  2019年   19篇
  2018年   17篇
  2017年   23篇
  2016年   13篇
  2015年   9篇
  2014年   15篇
  2013年   25篇
  2012年   11篇
  2011年   12篇
  2010年   13篇
  2009年   20篇
  2008年   16篇
  2007年   16篇
  2006年   18篇
  2005年   11篇
  2004年   16篇
  2003年   12篇
  2002年   12篇
  2001年   12篇
  2000年   12篇
  1999年   15篇
  1998年   6篇
  1997年   10篇
  1996年   3篇
  1995年   5篇
  1994年   6篇
  1993年   3篇
  1992年   4篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1980年   1篇
排序方式: 共有394条查询结果,搜索用时 46 毫秒
131.
The main purpose of this study is to experimentally investigate the effect of temperature on the seepage transport of suspended particles (SP) with a median diameter of 10–47 μm in a porous medium for various seepage velocities. The results show that the rise of temperature accelerates the irregular movements of SPs in the porous medium and reduces their migration velocity. As a result, the pore volume corresponding to the peak value of the breakthrough curves is apparently delayed, and the peak value in the effluent is decreased. The migration velocity of SPs decreases with increasing particle size, regardless of the Darcy velocity and temperature. The longitudinal dispersivity of SPs decreases slightly with increasing temperature and then remains almost unchanged. Larger particles experience more irregular movements induced by the limit of pore size, which leads to a larger dispersivity. The deposition coefficient increases with increasing temperature, especially in the case of a high seepage velocity, and then tends to be stable. The deposition coefficient for large‐sized particles is higher than that for small‐sized particles, which can be attributed to the restriction of large‐sized particles by the narrow pores in the porous medium. The recovery rate decreases slightly with the increase of temperature until a critical value is reached, beyond which it remains almost unchanged. In summary, temperature is a significant factor affecting the transport and deposition of SPs in the porous medium, and the transport parameters such as particle velocity, dispersivity, and deposition coefficient.  相似文献   
132.
A better understanding of stormwater generation and solute sources is needed to improve the protection of aquatic ecosystems, infrastructure, and human health from large runoff events. Much of our understanding of water and solutes produced during stormflow comes from studies of individual, small headwater catchments. This study compared many different types of catchments during a single large event to help isolate landscape controls on streamwater and solute generation, including human‐impacted land cover. We used a distributed network of specific electrical conductivity sensors to trace storm response during the post‐tropical cyclone Sandy event of October 2012 at 29 catchments across the state of New Hampshire. A citizen science sensor network, Lotic Volunteer for Temperature, Electrical Conductivity, and Stage, provided a unique opportunity to investigate high‐temporal resolution stream behavior at a broad spatial scale. Three storm response metrics were analyzed in this study: (a) fraction of new water contributing to the hydrograph; (b) presence of first flush (mobilization of solutes during the beginning of the rain event); and (c) magnitude of first flush. We compared new water and first flush to 64 predictor attributes related to land cover, soil, topography, and precipitation. The new water fraction was positively correlated with low and medium intensity development in the catchment and riparian buffers and with the precipitation from a rain event 9 days prior to Sandy. The presence of first flush was most closely related (positively) to soil organic matter. Magnitude of first flush was not strongly related to any of the catchment variables. Our results highlight the potentially important role of human landscape modification in runoff generation at multiple spatial scales and the lack of a clear role in solute flushing. Further development of regional‐scale in situ sensor networks will provide better understanding of stormflow and solute generation across a wide range of landscape conditions.  相似文献   
133.
Radionuclides released to the environment and deposited with or onto snow can be stored over long time periods if ambient temperature stays low, particularly in glaciated areas or high alpine sites. The radionuclides will be accumulated in the snowpack during the winter unless meltwater runoff at the snow base occurs. They will be released to surface waters within short time during snowmelt in spring. In two experiments under controlled melting conditions of snow in the laboratory, radionuclide migration and runoff during melt‐freeze‐cycles were examined. The distribution of Cs‐134 and Sr‐85 tracers in homogeneous snow columns and their fractionation and potential preferential elution in the first meltwater portions were determined. Transport was associated with the percolation of meltwater at ambient temperatures above 0 °C after the snowpack became ripe. Mean migration velocities in the pack were examined for both nuclides to about 0.5 cm hr?1 after one diurnal melt‐freeze‐cycle at ambient temperatures of ?2 to 4 °C. Meltwater fluxes were calculated with a median of 1.68 cm hr?1. Highly contaminated portions of meltwater with concentration factors between 5 and 10 against initial bulk concentrations in the snowpack were released as ionic pulse with the first meltwater. Neither for caesium nor strontium preferential elution was observed. After recurrent simulated day‐night‐cycles (?2 to 4 °C), 80% of both radionuclides was released with the first 20% of snowmelt within 4 days. 50% of Cs‐134 and Sr‐85 were already set free after 24 hr. Snowmelt contained highest specific activities when the melt rate was lowest during the freeze‐cycles due to concentration processes in remaining liquids, enhanced by the melt‐freeze‐cycling. This implies for natural snowpack after significant radionuclide releases, that long‐time accumulation of radionuclides in the snow during frost periods, followed by an onset of steady meltwater runoff at low melt rates, will cause the most pronounced removal of the contaminants from the snow cover. This scenario represents the worst case of impact on water quality and radiation exposure in aquatic environments.  相似文献   
134.
Temperature is often used to infer the effect of land use and climate conditions on aquifers. Reliable data are needed to examine the temperature behaviour in the subsurface; thus, the use of robust acquisition techniques is unavoidable. Three temperature measurement techniques were applied to assess the sources of bias that could occur during temperature logging in a shallow Quaternary coastal aquifer in Ferrara (Northern Italy). Open borehole temperature logging, multilevel sampling straddle packers isolated temperature measurements within a flow cell above ground and multilevel sampling straddle packers isolated temperature measurements via an in‐well level logger (MLS‐IW) were compared for several coastal monitoring wells to gain insights on the limitations of each technique. Results show that the source of bias between the three applied techniques are different: (i) the open borehole temperature logging method tends to record heat convection through the open borehole and is not representative of the aquifer temperature distribution; (ii) the multilevel sampling straddle packers isolated temperature measurements within a flow cell above ground method is swayed by the air temperature and the heating of the submersible pump used to lift groundwater above ground; and (iii) the MLS‐IW provides the most reliable vertical thermal profiling both in summer and winter, because groundwater temperature is directly measured at the selected monitoring depth. The implementation of a 1D flow model demonstrates that if precise temperature profiles are needed to infer the influence that land use and climate changes have on groundwater, the MLS‐IW method is a reliable method that could be applied to existing monitoring wells. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
135.
The Karhunen-Loeve (KL) decomposition and the polynomial chaos (PC) expansion are elegant and efficient tools for uncertainty propagation in porous media. Over recent years, KL/PC-based frameworks have successfully been applied in several contributions for the flow problem in the subsurface context. It was also shown, however, that the accurate solution of the transport problem with KL/PC techniques is more challenging. We propose a framework that utilizes KL/PC in combination with sparse Smolyak quadrature for the flow problem only. In a subsequent step, a Lagrangian sampling technique is used for transport. The flow field samples are calculated based on a PC expansion derived from the solutions at relatively few quadrature points. To increase the computational efficiency of the PC-based flow field sampling, a new reduction method is applied. For advection dominated transport scenarios, where a Lagrangian approach is applicable, the proposed PC/Monte Carlo method (PCMCM) is very efficient and avoids accuracy problems that arise when applying KL/PC techniques to both flow and transport. The applicability of PCMCM is demonstrated for transport simulations in multivariate Gaussian log-conductivity fields that are unconditional and conditional on conductivity measurements.  相似文献   
136.
This paper examines the conservativeness of tracers through the sediment generation process. This is done by comparing a selection of tracer properties of sediment eroded from large plots by simulated rainfall, with the corresponding properties of the source materials within the plots. Sediment was generated using three simulated rainfall events for each of five selected erosion source types in the Tarago catchment, Victoria, Australia. As there were particle size and organic content differences between the source material and the generated sediment, the measured tracer properties of the source material were corrected for these differences. The possible role of analytical errors in this investigation was also addressed. The geochemical property, concentration of Fe2O3, was not conservative for any of the process sources investigated. Concentration of Al2O3 was not conservative for three of the four process sources investigated, and the sum of molecular proportions of CaO**, Na2O, K2O and Al2O3 was not conservative for two of the four process sources investigated. Mineral magnetic properties, IRM850 and χ were also found to be not conservative, although this may be the result of the complex relationship between particle size and mineral magnetic properties not being adequately accommodated in this analysis. The radionuclide tracers, 137Cs and 210Pbex, were found to be conservative through the sediment generation process. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
137.
The acidic discharge from Cement Creek, containing elevated concentrations of dissolved metals and sulphate, mixed with the circumneutral‐pH Animas River over a several hundred metre reach (mixing zone) near Silverton, CO, during this study. Differences in concentrations of Ca, Mg, Si, Sr, and SO42? between the creek and the river were sufficiently large for these analytes to be used as natural tracers in the mixing zone. In addition, a sodium chloride (NaCl) tracer was injected into Cement Creek, which provided a Cl? ‘reference’ tracer in the mixing zone. Conservative transport of the dissolved metals and sulphate through the mixing zone was verified by mass balances and by linear mixing plots relative to the injected reference tracer. At each of seven sites in the mixing zone, five samples were collected at evenly spaced increments of the observed across‐channel gradients, as determined by specific conductance. This created sets of samples that adequately covered the ranges of mixtures (mixing ratios, in terms of the fraction of Animas River water, %AR). Concentratis measured in each mixing zone sample and in the upstream Animas River and Cement Creek were used to compute %AR for the reference and natural tracers. Values of %AR from natural tracers generally showed good agreement with values from the reference tracer, but variability in discharge and end‐member concentrations and analytical errors contributed to unexpected outlier values for both injected and natural tracers. The median value (MV) %AR (calculated from all of the tracers) reduced scatter in the mixing plots for the dissolved metals, indicating that the MV estimate reduced the effects of various potential errors that could affect any tracer. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
138.
The spatial representativeness of gauging stations was investigated in two low‐mountainous river basins near the city of Trier, southwest Germany. Longitudinal profiles during low and high flow conditions were sampled in order to identify sources of solutes and to characterize the alteration of flood wave properties during its travel downstream. Numerous hydrographs and chemographs of natural flood events were analysed in detail. Additionally, artificial flood events were investigated to study in‐channel transport processes. During dry weather conditions the gauging station was only representative for a short river segment upstream, owing to discharge and solute concentrations of sources contiguous to the measurement site. During artificial flood events the kinematic wave velocity was considerably faster than the movement of water body and solutes, refuting the idea of a simple mixing process of individual runoff components. Depending on hydrological boundary conditions, the wave at a specific gauge could be entirely composed of old in‐channel water, which notably reduces the spatial representativeness of a sampling site. Natural flood events were characterized by a superimposition of local overland flow, riparian water and the kinematic wave process comprising the downstream conveyance of solutes. Summer floods in particular were marked by a chronological occurrence of distinct individual runoff components originating only from a few contributing areas adjacent to the stream and gauge. Thus, the representativeness of a gauge for processes in the whole basin depends on the distance of the nearest significant source to the station. The consequence of our study is that the assumptions of mixing models are not satisfied in river basins larger than 3 km2. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
139.
本文首先阐述了锌同位素的研究背景、分析测试方法和示踪环境污染方面的应用,然后以塞纳河锌同位素示踪研究为例,对利用重金属同位素示踪河流污染源必须满足的前提条件及应用进行了详细论述,指出了今后有关流域锌同位素研究的重点应在以下几个方面:锌同位素组成随河流中颗粒物不同粒径、不同矿物成分的变化关系;河流生物吸收过程中锌同位素分馏机制;以及流域土壤保留源自大气沉降及农业肥料锌过程中的锌同位素演化机理。  相似文献   
140.
华北平原地下水补给量计算分析   总被引:3,自引:0,他引:3       下载免费PDF全文
采用溴示踪法研究华北平原山前冲积平原和中部平原有灌溉和无灌溉区域的地下水补给,得到研究区平均地下水补给量为126.10 mm,平均补给系数为0.185 2,有灌溉实验点的补给量和补给系数大于无灌溉实验点。同时对示踪剂运移深度和含水量分布、降雨灌溉量和地下水埋深等影响因素进行分析。将各实验点计算结果与国内有关学者采用示踪剂法所得到的补给系数进行对比分析,论证了研究结果的可靠性,此研究成果可为华北平原地下水资源分析提供重要参考。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号