首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7806篇
  免费   1884篇
  国内免费   2941篇
测绘学   528篇
大气科学   4114篇
地球物理   1580篇
地质学   2912篇
海洋学   1566篇
天文学   87篇
综合类   622篇
自然地理   1222篇
  2024年   57篇
  2023年   165篇
  2022年   329篇
  2021年   389篇
  2020年   423篇
  2019年   506篇
  2018年   417篇
  2017年   428篇
  2016年   452篇
  2015年   506篇
  2014年   625篇
  2013年   685篇
  2012年   688篇
  2011年   666篇
  2010年   487篇
  2009年   612篇
  2008年   509篇
  2007年   658篇
  2006年   509篇
  2005年   501篇
  2004年   407篇
  2003年   331篇
  2002年   271篇
  2001年   258篇
  2000年   244篇
  1999年   224篇
  1998年   224篇
  1997年   169篇
  1996年   142篇
  1995年   148篇
  1994年   127篇
  1993年   117篇
  1992年   78篇
  1991年   54篇
  1990年   51篇
  1989年   41篇
  1988年   38篇
  1987年   18篇
  1986年   10篇
  1985年   17篇
  1984年   11篇
  1983年   7篇
  1982年   11篇
  1981年   7篇
  1980年   5篇
  1979年   1篇
  1978年   3篇
  1977年   2篇
  1976年   1篇
  1954年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
811.
The nature and strength of the correlation between stream gradient and valley side slope angle are seen to vary according to the order of the stream segment. In addition, it is suggested that the relationship will depend on the efficiency of slope processes, and that this may contribute to tye different from of relationship obtained in different regions.  相似文献   
812.
Water stored in soils, in part, controls vegetation productivity and the duration of growing seasons in wildland ecosystems. Soil water is the dynamic product of precipitation, evapotranspiration and soil properties, all of which vary across complex terrain making it challenging to decipher the specific controls that soil water has on growing season dynamics. We assess how soil water use by plants varies across elevations and aspects in the Dry Creek Experimental Watershed in southwest Idaho, USA, a mountainous, semiarid catchment that spans low elevation rain to high elevation snow regimes. We compare trends in soil water and soil temperature with corresponding trends in insolation, precipitation and vegetation productivity, and we observe trends in the timing, rate and duration of soil water extraction by plants across ranges in elevation and aspect. The initiation of growth-supporting conditions, indicated by soil warming, occurs 58 days earlier at lower, compared with higher, elevations. However, growth-supporting conditions also end earlier at lower elevations due to the onset of soil water depletion 29 days earlier than at higher elevations. A corresponding shift in peak NDVI timing occurs 61 days earlier at lower elevations. Differences in timing also occur with aspect, with most threshold timings varying by 14–30 days for paired north- and south-facing sites at similar elevations. While net primary productivity nearly doubles at higher elevations, the duration of the warm-wet period of active water use does not vary systematically with elevation. Instead, the greater ecosystem productivity is related to increased soil water storage capacity, which supports faster soil water use and growth rates near the summer solstice and peak insolation. Larger soil water storage does not appear to extend the duration of the growing season, but rather supports higher growing season intensity when wet-warm soil conditions align with high insolation. These observations highlight the influence of soil water storage capacity in dictating ecological function in these semiarid steppe climatic regimes.  相似文献   
813.
This paper introduces an unconventional constitutive model for soils, which deals with a unified thermo‐mechanical modelling for unsaturated soils. The relevant temperature and suction effects are studied in light of elasto‐plasticity. A generalized effective stress framework is adopted, which includes a number of intrinsic thermo‐hydro‐mechanical connections, to represent the stress state in the soil. Two coupled constitutive aspects are used to fully describe the non‐isothermal behaviour. The mechanical constitutive part is built on the concepts of bounding surface theory and multi‐mechanism plasticity, whereas water retention characteristics are described using elasto‐plasticity to reproduce the hysteretic response and the effect of temperature and dry density on retention properties. The theoretical formulation is supported by comparisons with experimental results on two compacted clays. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
814.
引起全球海平面变化的因素是复杂多样的,大气压、风、大洋环流以及海水密度的变化,都会引起海平面在时间、空间上的变化,而海水温度的变化是海平面变化的主要原因。该文利用法国Archiving, Validation and Interpretation of Satellite Oceanographic data(AVISO)的海表面高度异常数据,计算了1992年10月至2007年1月间,全球海平面的平均上升速度,同时详细解算海平面上升速度的全球空间分布,分析全球海平面的变化趋势并将海平面变化同美国国家海洋大气署(NOAA)的Optimum Interpolation Sea Surface Temperature (OISST)海表面温度数据进行了比对和相关分析。  相似文献   
815.
Stream and shallow groundwater responses to rainfall are characterized by high spatial variability, but hydrologic response variability across small, agro-forested sub-catchments remains poorly understood. Conceivably, improved understanding in this regard will result in agricultural practices that more effectively limit nutrient runoff, erosion, and pollutant transport. Terrestrial hydrologic response approaches can provide valuable information on stream-aquifer connectivity in these mixed-use watersheds. A study was implemented, including eight stream and co-located shallow groundwater monitoring sites, in a small sub-catchment of the Chesapeake Bay watershed in the Northeast, USA to advance this ongoing need. During the study period, 100 precipitation-receiving days (i.e., 24-hour periods, midnight to midnight) were observed. On average, the groundwater table responded more to precipitation than stream stage (level change of 0.03 vs. 0.01 m and rainfall-normalized level change estimate of 3.81 vs. 3.37). Median stream stage responses, groundwater table responses, and response ratios were significantly different between sub-catchments (n = 8; p < 0.001). Study area average precipitation thresholds for runoff and shallow groundwater flow were 2.8 and 0.6 cm, respectively. Individual sub-catchment thresholds ranged from 0.5 to 2.8 cm for runoff and 0.2 to 1.3 cm for shallow groundwater flow. Normalized response lag times between the stream and shallow groundwater ranged from −0.50 to 3.90 s·cm−1, indicating that stormflow in one stream section was regulated by groundwater flow during the period of study. The observed differences in hydrologic responses to precipitation advance future modelling efforts by providing examples of how terrestrial groundwater response methods can be used to investigate sub-catchment spatial variability in stream-aquifer gradients with co-located shallow groundwater and stream stage data. Additionally, results demonstrate asynchronous stream and shallow groundwater responses on precipitation-receiving days, which may hold important implications for modelling hydrologic and biogeochemical fate and transport processes in small, agro-forested catchments.  相似文献   
816.
Stream temperature will be subject to changes because of atmospheric warming in the future. We investigated the effects of the diurnal timing of air temperature changes – daytime warming versus nighttime warming – on stream temperature. Using the physically based model, Heat Source, we performed a sensitivity analysis of summer stream temperatures to three diurnal air temperature distributions of +4 °C mean air temperature: i) uniform increase over the whole day, ii) warmer daytime and iii) warmer nighttime. The stream temperature model was applied to a 37‐km section of the Middle Fork John Day River in northeastern Oregon, USA. The three diurnal air temperature distributions generated 7‐day average daily maximum stream temperatures increases of approximately +1.8 °C ± 0.1 °C at the downstream end of the study section. The three air temperature distributions, with the same daily mean, generated different ranges of stream temperatures, different 7‐day average daily maximum temperatures, different durations of stream temperature changes and different average daily temperatures in most parts of the reach. The stream temperature changes were out of phase with air temperature changes, and therefore in many places, the greatest daytime increase in stream temperature was caused by nighttime warming of air temperatures. Stream temperature changes tended to be more extreme and of longer duration when driven by air temperatures concentrated in either daytime or nighttime instead of uniformly distributed across the diurnal cycle. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
817.
任国玉 《地理研究》1987,6(4):70-76
应用修订的康拉德公式计算美国中东部温带地区日均温稳定≥10℃积温,并同我国相应纬度地区作了对比。这一对比揭示出我国东部温带并非世界同纬度地带夏半年热量资源最丰富。  相似文献   
818.
棉铃虫Helicoverpa armigera 属鳞翅目夜蛾科,是一种世界性的重大害虫,在世界各地均有分布。因其具有远距离迁飞,繁殖力强等特点,条件适宜时常大面积暴发成灾,给农业生产带来较大损失。摸清棉铃虫生活习性、种群变化规律是棉铃虫防治的前提条件。由于棉铃虫是变温昆虫,气候条件对其生长发育、成灾机制等产生极大影响。因此,本文系统综述了气候变暖对棉铃虫影响的研究进展,包括棉铃虫生长发育、体色变化、繁殖、滞育、飞行、越冬、与作物的互作关系等方面,并对未来研究重点进行了展望。以期对棉铃虫的综合治理提供理论依据。  相似文献   
819.
为了减少温度变化对高精度时间比对的影响,设计了一种由带存储功能的数字温度计DS1624构建的、基于I2C总线的温度监测系统,并给出了系统的构成及软件、硬件实现方法和详细实验结果。分析表明,以温度监测系统为关键部分的温度控制系统是高精度时间比对所必要的。  相似文献   
820.
Z. X. Xu  T. L. Gong  J. Y. Li 《水文研究》2008,22(16):3056-3065
The Tibetan Plateau has one of the most complex climates in the world. Analysis of the climate in this region is important for understanding the climate change worldwide. In this study, climate patterns and trends in the Tibetan Plateau were analysed for the period from 1961 to 2001. Air temperature and precipitation were analysed on monthly and annual time scales using data collected from the National Meteorological Centre, China Meteorological Administration. Nonlinear slopes were estimated and analysed to investigate the spatial and temporal trends of air temperature and precipitation in the Tibetan Plateau using a Mann–Kendall method. Spatial analysis of air temperature and precipitation variability across the Tibetan Plateau was undertaken. While most trends are local in nature, there are general basinwide patterns. Temperature during the last several decades showed a long‐term warmer trend, especially the areas around Dingri and Zogong stations, which formed two increasing centres. Only one of the stations investigated exhibited decreasing trend, and this was not significant. Precipitation in the Tibetan Plateau has increased in most regions of the study area over the past several decades, especially in the eastern and central part, while the western Tibetan Region exhibited a decreased trend over the same period. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号