首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1875篇
  免费   171篇
  国内免费   417篇
测绘学   3篇
大气科学   7篇
地球物理   283篇
地质学   1647篇
海洋学   67篇
天文学   357篇
综合类   63篇
自然地理   36篇
  2024年   8篇
  2023年   21篇
  2022年   25篇
  2021年   31篇
  2020年   37篇
  2019年   53篇
  2018年   45篇
  2017年   39篇
  2016年   40篇
  2015年   44篇
  2014年   54篇
  2013年   97篇
  2012年   80篇
  2011年   65篇
  2010年   54篇
  2009年   112篇
  2008年   91篇
  2007年   139篇
  2006年   127篇
  2005年   95篇
  2004年   113篇
  2003年   119篇
  2002年   83篇
  2001年   92篇
  2000年   91篇
  1999年   99篇
  1998年   89篇
  1997年   60篇
  1996年   68篇
  1995年   79篇
  1994年   65篇
  1993年   65篇
  1992年   42篇
  1991年   27篇
  1990年   23篇
  1989年   27篇
  1988年   13篇
  1987年   16篇
  1986年   15篇
  1985年   4篇
  1984年   7篇
  1983年   8篇
  1981年   1篇
排序方式: 共有2463条查询结果,搜索用时 15 毫秒
801.
位于祁连地块北缘的门源-柯柯里杂岩体出露一套早古生代高级变质岩,其中长英质片麻岩的矿物组合以石榴子石+夕线石+黑云母+长石+石英为特征,变基性岩以石榴子石+单斜辉石+角闪石+斜长石+石英为特征,具有典型的高角闪岩相-麻粒岩相组合特征。岩相学观察、相平衡模拟和地质温压计估算结果显示门源地区石榴黑云斜长片麻岩和石榴角闪岩的峰期变质作用的温压条件分别为780℃、9.0kbar和790℃、8.4kbar。相平衡模拟揭示石榴黑云斜长片麻岩经历了近等压降温的逆时针P-T轨迹,可能反映了处于中地壳的岩石经历了与洋壳俯冲相关的弧岩浆岩和弧火山岩所带来大量的热所导致的高温变质及随后的等压冷却过程。锆石U-Pb定年显示门源-柯柯里地区2个高级变质岩的变质年龄和1个闪长岩的弧岩浆作用年龄分别为495±2Ma、493±3Ma和495±3Ma,表明门源-柯柯里一带共同经历了北祁连洋壳俯冲导致的500Ma左右的弧岩浆作用和变质作用。门源-柯柯里高温低压变质带和其北侧百经寺-清水沟一带出露的HP/LT变质岩组成了双变质带,并指示了北祁连洋早古生代时期的向南俯冲。  相似文献   
802.
Massive Zn‐Pb‐Ag sulfide mineralization appears conformable with felsic volcanism, developed in an Upper Jurassic volcanic arc to the Southwest (SW) of the Serbo‐Macedonian continent in Northern Greece. The host volcanic sequence of the mineralization comprises mylonitized rhyolitic to rhyodacitic lavas, pyroclastics, quartz‐feldspar porphyries, and cherty tuffs. A “white mica—quartz—pyrite” mineral assemblage characterizes the volcanic rocks in the footwall and hanging‐wall of massive sulfide ore layers, formed as a result of greenschist‐grade regional metamorphism on “clay‐quartz‐pyrite” hydrothermal alteration haloes. Massive ore lenses are usually underlain by deformed Cu‐pyrite and quartz‐pyrite stockworks. Most of the sulfide ore bodies have proximal‐type features. Ductile deformation and regional metamorphism have transformed many of the stockwork structures. The mineralization is characterized by high Zn, Pb, and Ag contents, while Cu and critical metals are low. Primary depositional textures, for example, layering, clastic pyrite, colloform, and atoll textures were identified. The overall textural features of the mineralization indicate it has undergone mechanical deformation. The most prominent features of the effects of metamorphism, folding and shearing, are modification of the ore body morphology toward flattened and boudinage structures and transformation of the ore textures toward the dominance of planar fabrics. Sulfur isotope analyses of sulfides along with textural observations are consistent with a dual source of sulfide sulfur. Sulfur isotope values for sphalerite, non‐colloform pyrite, galena, and chalcopyrite fall in a limited range from ?1.6 to +4.8‰ (mean δ34S + 2‰), indicating a hydrothermal source derived from the reduction of coeval seawater sulfate in the convective system. Pyrites with colloform and atoll textures are characterized by a 34S depletion, indicating a bacterial reduction of coeval seawater sulfate. The morphology of ore beds, the mineralogy, sulfide textures, and ore chemistry along with the petrology and tectonic setting of the host rocks can be attributed to typical of a bimodal‐felsic metallogenesis. Although similar in many respects to classic Kuroko‐type volcanogenic massive sulfide mineralization, it has some atypical features, like the absence of barite ore, which is possibly a result of significant temporal depletion in sulfate due to bacterial reduction, a conclusion supported by the widespread occurrence of colloidal and atoll textures of pyrite.  相似文献   
803.
滕霞  张建新 《岩石学报》2020,36(10):2963-2982
超高温(≥900℃)变质作用发生在自太古代以来的各个地质历史时期,目前极可能也正发生在青藏高原地壳深部。同时,它也是以冈瓦纳为代表的超大陆在最终拼合时的显著标识,这一关联指示了超高温变质作用与碰撞造山带的密切关系。本文总结了东冈瓦纳内与泛非造山作用有关的典型超高温变质岩的分布、岩石学特征、峰期变质条件、P-T轨迹及形成时代,并简要介绍我们在柴达木地块西段新识别出的泛非期超高温变质作用的基本特征。结合东冈瓦纳超高温变质作用特征和造山带热模拟研究的新进展,本文获得以东冈瓦纳超高温变质作用为代表的碰撞造山带超高温变质作用的几点认识:1)东冈瓦纳麻粒岩地块中的超高温变质岩和普通麻粒岩记录了相似的变质年龄、P-T轨迹以及呈过渡变化的峰期温度,两者可能是同一构造事件的产物,共同组成一个高温-超高温变质岩单元;2)超高温变质作用在东冈瓦纳内部持续了至少超过30Myr,但未见呈大规模的同期或近同期基性岩岩浆出露,指示此处需要的长期热源不是地幔来源岩浆;3)虽然数值模拟能成功呈现加厚地壳被放射元素衰变热加热至超高温条件的情况,且加热及持续时间与东冈瓦纳超高温变质约束的结果相当,但是模拟中需要的高生热值暗示,在自然界中,完全只靠放射性元素衰变生热或许不能让碰撞造山带内达到超高温条件;4)碰撞造山带经历了长期的构造演化,这一过程中,造山带内地壳不太可能同时达到超高温变质条件,这一特征可能反映在P-T-t轨迹的差异上,对这些轨迹的系统研究有助于对超高温变质作用的构造-热过程的理解。  相似文献   
804.
Abstract

The Charters Towers Province, of the northern Thomson Orogen, records conversion from a Neoproterozoic passive margin to a Cambrian active margin, as characteristic of the Tasmanides. The passive margin succession includes a thick metasedimentary unit derived from Mesoproterozoic rocks. The Cambrian active margin is represented by upper Cambrian–Lower Ordovician (500–460?Ma) basinal development (Seventy Mile Range Group), plutonism and metamorphism resulting from an enduring episode of arc–backarc crustal extension. Detrital zircon age spectra indicate that parts of the metamorphic basement of the Charters Towers Province (elements of the Argentine Metamorphics and Charters Towers Metamorphics) overlap in protolith age with the basal part of the Seventy Mile Range Group and thus were associated with extensional basin development. Detrital zircon age data from the extensional basin succession indicate it was derived from a far-field (Pacific-Gondwana) primary source. However, a young cluster (<510?Ma) is interpreted as reflecting a local igneous source related to active margin tectonism. Relict zircon in a tonalite phase of the Fat Hen Creek Complex suggests that active margin plutonism may have extended back to ca 530?Ma. Syntectonic plutonism in the western Charters Towers Province is dated at ca 485–480?Ma, close to timing of metamorphism (477–467?Ma) and plutonism more generally (508–455?Ma). The dominant structures in the metamorphic basement formed with gentle to subhorizontal dips and are inferred to have formed by extensional ductile deformation, while normal faulting developed at shallower depths, associated with heat advection by plutonism. Lower Silurian (Benambran) shortening, which affected metamorphic basement and extensional basin units, resulted in the dominant east–west-structural trends of the province. We consider that these trends reflect localised north–south shortening rather than rotation of the province as is consistent with the north–south paleogeographic alignment of extensional basin successions.
  1. KEY POINTS
  2. Northern Tasmanide transition from passive to active margin tectonic mode had occurred by ca 510?Ma, perhaps as early as ca 530?Ma.

  3. Cambro-Ordovician active margin tectonism of the Charters Towers Province (northern Thomson Orogen) was characterised by crustal extension.

  4. Crustal extension resulted in the development of coeval (500–460?Ma) basin fill, granitic plutonism and metamorphism with rock assemblages as exposed across the Charters Towers Province developed at a wide range of crustal levels and expressing heterogeneous exhumation.

  5. Protoliths of metasedimentary assemblages of the Charters Towers Province include both Proterozoic passive margin successions and those emplaced as Cambrian extensional basin fill.

  相似文献   
805.
In central Shikoku, SW Japan, the Mikabu belt is bounded to the north by the Sanbagawa belt, and to the south by the northern (N) Chichibu belt. The N-Chichibu belt can be further subdivided into northern and southern parts. There is no apparent difference in the overall geology, structure, or fossil and radiometric ages between the Mikabu belt and the northern part of the N-Chichibu belt. Greenstones from the Mikabu belt and the northern part of the N-Chichibu belt show evidence for similar low-grade metamorphism, and include the following mineral assemblages with albite+chlorite in excess: metamorphic aragonite, sodic pyroxene+quartz, epidote+actinolite+pumpellyite, glaucophane+ pumpellyite+quartz, and lawsonite (not with actinolite or glaucophane). These similarities suggest that the Mikabu belt and the northern part of the N-Chichibu belt belong to the same geological unit (the MB-NNC complex). The mineral assemblages also indicate that the MB-NNC complex belongs to a different metamorphic facies from the low-grade part of the Sanbagawa belt, that is, the former represents lower temperature/higher pressure conditions than the latter. Structural and petrological continuity between the MB-NNC complex and Sanbagawa belt has not yet been confirmed, but both have similar radiometric ages. It is therefore most likely that the MB-NNC complex and Sanbagawa belt belong to the same subduction complex, and were metamorphosed under similar but distinct conditions. These two units were juxtaposed during exhumation. In contrast, the southern part of the N-Chichibu belt is distinct in lithology and structure, and includes no mineral assemblages diagnostic of the MB-NNC complex and the Sanbagawa belt. Thus, the southern part of the N-Chichibu belt may represent a different geological unit from the MB-NNC complex and Sanbagawa belt.  相似文献   
806.
807.
A reaction producing jadeitic pyroxene in metagreywackes of the northern Diablo Range has been identified on the basis of mineral distribution, isograd patterns and composition of coexisting minerals. The appearance of jadeitic pyroxene (∼Jd80) is closely followed by the disappearance of pumpellyite, which indicates that pumpellyite plays a major role in the pyroxene-producing reaction. A new projection from hematite, lawsonite, chlorite, quartz and H2O on to the NaAlO2-FeO-MgO ternary confirms the role of pumpellyite in pyroxene production and suggests a reaction of the form: 1.00 pumpellyite + 0.31 chlorite + 8.71 albite + 0.70 hematite + 2.00 H2O = 8.54 jadeite + 0.57 glaucophane + 3.09 lawsonite + 5.26 quartz. Metagreywackes of the northern Diablo Range were metamorphosed under conditions of P H2O= P total at 200-300 °C and 7.5-10.0 kbar. Despite the low temperatures attained during metamorphism, the assumption of equilibrium yields results consistent with field observations and phase relations.  相似文献   
808.
Abstract Petrological study of highly strained carbonate and pelitic rocks within the contact aureole surrounding the western part of the Papoose Flat pluton yields thermal profiles (plots of metamorphic temperature versus distance) across the aureole that show temperature gradients which are relatively flat and narrow (<100m). The gradients occur close to the contact and indicate a slight decrease in temperature from 500–550°C at the pluton/wall rock contact to 450–500°C at the outer margin of the aureole. One thermal profile across low-strain metasedimentary rocks located in the southern part of the aureole shows that thermal effects from emplacement extend no further than 600 m from the contact. Coexistence of andalusite and cordierite in pelitic rocks of the aureole constrain pressures to <4 kbar. Thermal modelling using an analytical solution of the conductive heat flow equation for a rectangular-shaped pluton reproduces the observed thermal maxima and profile shape. Conductive rather than convective cooling also is supported by isotopic and field evidence for limited fluid flow along the strongly deformed margin of the pluton. Simple thermal models coupled with observed high-temperature deformation features and a measured 90% attenuation of stratigraphic units in the plastically deformed western part of the pluton's aureole indicate that strain rates may have been of the order of 10-12s-1. Evidence for episodic heating, such as two distinct generations of andalusite growth in pelites from the aureole, alternatively may indicate a longer heating event and, therefore, slower strain rates. Thermal models also indicate that parts of the pluton still may have been above the solidus during deformation of the pluton margin and aureole.  相似文献   
809.
Reconnection of the magnetic lines of force is considered in case the magnetic energy exceeds the rest energy of the matter. It is shown that the classical Sweet–Parker and Petschek models are generalized straightforwardly to this case and the reconnection rate may be estimated by substituting the Alfven velocity in the classical formulae with the speed of light. The outflow velocity in the Sweet–Parker configuration is mildly relativistic. In the Petschek configuration, the outflow velocity is ultrarelativistic whereas the angle between the slow shocks is very small. As a result of the strong compression, the plasma outflow in the Petschek configuration may become strongly magnetized if the reconnecting fields are not exactly antiparallel.  相似文献   
810.
Geometrical relationships involving inclusions and partial inclusions in metamorphic microstructures can be inadequate for inferring an order of crystallization and hence a metamorphic reaction. Unique spatial and/or chemical relationships need to be defined for mineral inclusions, in the context of a reference paragenesis, commonly the matrix assemblage. Corona microstructures are reliable indicators of metamorphic reactions, but require considerable care when used to infer reactions or changes in P–T conditions, owing to kinetic problems, as well as to changes in the effective reaction volume during changes across relatively broad P–T stability fields of assemblages. Mineral equilibria models, most commonly implemented through P–T pseudosections, may allow the order in which different minerals become stable along a given P–T path to be inferred. However, the order in which two minerals become stable may be different from the order in which two grains of these minerals nucleate. Furthermore, such diagrams cannot make predictions about which minerals will form porphyroblasts and which minerals will form inclusions in porphyroblasts. An evaluation of three examples from the Australian Proterozoic shows that modelling, in combination with inclusion‐host relationships, is a powerful tool for understanding the metamorphic evolution of a rock, but involves considerable uncertainty.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号