全文获取类型
收费全文 | 308篇 |
免费 | 69篇 |
国内免费 | 2篇 |
专业分类
测绘学 | 234篇 |
大气科学 | 4篇 |
地球物理 | 3篇 |
地质学 | 10篇 |
海洋学 | 9篇 |
综合类 | 66篇 |
自然地理 | 53篇 |
出版年
2025年 | 1篇 |
2024年 | 10篇 |
2023年 | 18篇 |
2022年 | 31篇 |
2021年 | 28篇 |
2020年 | 32篇 |
2019年 | 18篇 |
2018年 | 12篇 |
2017年 | 17篇 |
2016年 | 18篇 |
2015年 | 23篇 |
2014年 | 10篇 |
2013年 | 35篇 |
2012年 | 18篇 |
2011年 | 18篇 |
2010年 | 12篇 |
2009年 | 15篇 |
2008年 | 19篇 |
2007年 | 14篇 |
2006年 | 11篇 |
2005年 | 8篇 |
2004年 | 3篇 |
2003年 | 4篇 |
2001年 | 1篇 |
2000年 | 2篇 |
1993年 | 1篇 |
排序方式: 共有379条查询结果,搜索用时 0 毫秒
41.
大数据时代道路数据来源日益增多,跨数据源的道路选取面临巨大挑战。本文针对数据语义不一致问题,提出一种基于本体知识推理的多源道路选取方法。首先,将1∶5万基本比例尺地形图道路数据作为基础案例,将四维图新导航电子地图和开放街道地图中的道路数据作为试验数据,基于stroke计算道路等级、长度、连通度、接近度、中介度特征项,提取特征项概念并构建本体;然后,从语义特征项和数值特征项两方面计算本体概念相似性,建立基础案例与试验数据间的关联关系;最后,基于本体和语义网规则语言定义本体通用、语义特征、数值特征三类选取规则,实现跨数据源道路选取的过程性知识推理。试验表明,本文方法可基于本体概念相似性度量消除语义差异,同时利用语义网规则语言进行知识推理,可实现多源道路数据向基本比例尺数据的智能选取。 相似文献
42.
43.
自动驾驶技术已成为未来智能交通的发展方向之一,高精度地图为L3级及以上自动驾驶实现高精度定位和路径规划提供先验信息,是自动驾驶车辆传感器在遮挡或观测距离受限情况下的重要补充。道路标线的位置和语义信息,比如实线和虚线的绝对位置是高精度地图的基本组成部分。本文从车载激光点云中提取扫描线,根据道路边缘位置几何形态的突变从扫描线中提取道路路面,在此基础上首先利用反距离加权插值的方法把路面点云图像以一定的分辨率转换为栅格图像,其次利用基于积分图的自适应阈值分割方法把栅格图像转化为二值图像,然后利用欧氏聚类的方法从二值图像中提取标线点云,并利用特征属性筛选的方法对提取的标线点云进行语义识别,最后建立交通标线和交通规则之间的语义关联。 相似文献
44.
Liqiu Meng 《地球空间信息科学学报》2020,23(1):61-67
ABSTRACTGeosensing and social sensing as two digitalization mainstreams in big data era are increasingly converging toward an integrated system for the creation of semantically enriched digital Earth. Along with the rapid developments of AI technologies, this convergence has inevitably brought about a number of transformations. On the one hand, value-adding chains from raw data to products and services are becoming value-adding loops composed of four successive stages – Informing, Enabling, Engaging and Empowering (IEEE). Each stage is a dynamic loop for itself. On the other hand, the “human versus technology” relationship is upgraded toward a game-changing “human and technology” collaboration. The information loop is essentially shaped by the omnipresent reciprocity between humans and technologies as equal partners, co-learners and co-creators of new values.The paper gives an analytical review on the mutually changing roles and responsibilities of humans and technologies in the individual stages of the IEEE loop, with the aim to promote a holistic understanding of the state of the art of geospatial information science. Meanwhile, the author elicits a number of challenges facing the interwoven human-technology collaboration. The transformation to a growth mind-set may take time to realize and consolidate. Research works on large-scale semantic data integration are just in the beginning. User experiences of geovisual analytic approaches are far from being systematically studied. Finally, the ethical concerns for the handling of semantically enriched digital Earth cover not only the sensitive issues related to privacy violation, copyright infringement, abuse, etc. but also the questions of how to make technologies as controllable and understandable as possible for humans and how to keep the technological ethos within its constructive sphere of societal influence. 相似文献
45.
46.
多源地理空间矢量数据关联分析 总被引:1,自引:1,他引:0
针对多源地理空间矢量数据多来源、难以集成综合利用这一现状,本文提出了多源地理空间矢量数据关联方法,并以此为基础构建了多源地理空间矢量数据关联的可视与计算查询系统。首先,对多源地理空间矢量数据关联的概念及分类进行了定义。然后,以此为基础,提出了关联关系构建技术:自适应四叉树编码技术、扫描线技术、几何匹配及语义匹配技术。最后,为实现关联关系的直观展示,设计了原型系统。关联技术的提出可建立起多源地理空间矢量数据之间的关联关系,原型系统的构建也为用户综合利用多源地理空间矢量数据提供了平台,提高了数据的利用率及数据查询的效能。 相似文献
47.
Lucas May Petry Camila Leite Da Silva Andrea Esuli Chiara Renso Vania Bogorny 《International journal of geographical information science》2020,34(7):1428-1450
ABSTRACT The increasing popularity of Location-Based Social Networks (LBSNs) and the semantic enrichment of mobility data in several contexts in the last years has led to the generation of large volumes of trajectory data. In contrast to GPS-based trajectories, LBSN and context-aware trajectories are more complex data, having several semantic textual dimensions besides space and time, which may reveal interesting mobility patterns. For instance, people may visit different places or perform different activities depending on the weather conditions. These new semantically rich data, known as multiple-aspect trajectories, pose new challenges in trajectory classification, which is the problem that we address in this paper. Existing methods for trajectory classification cannot deal with the complexity of heterogeneous data dimensions or the sequential aspect that characterizes movement. In this paper we propose MARC, an approach based on attribute embedding and Recurrent Neural Networks (RNNs) for classifying multiple-aspect trajectories, that tackles all trajectory properties: space, time, semantics, and sequence. We highlight that MARC exhibits good performance especially when trajectories are described by several textual/categorical attributes. Experiments performed over four publicly available datasets considering the Trajectory-User Linking (TUL) problem show that MARC outperformed all competitors, with respect to accuracy, precision, recall, and F1-score. 相似文献
48.
49.
50.
Martin Sudmanns Dirk Tiede Stefan Lang Andrea Baraldi 《International Journal of Digital Earth》2018,11(1):95-112
ABSTRACTThe challenge of enabling syntactic and semantic interoperability for comprehensive and reproducible online processing of big Earth observation (EO) data is still unsolved. Supporting both types of interoperability is one of the requirements to efficiently extract valuable information from the large amount of available multi-temporal gridded data sets. The proposed system wraps world models, (semantic interoperability) into OGC Web Processing Services (syntactic interoperability) for semantic online analyses. World models describe spatio-temporal entities and their relationships in a formal way. The proposed system serves as enabler for (1) technical interoperability using a standardised interface to be used by all types of clients and (2) allowing experts from different domains to develop complex analyses together as collaborative effort. Users are connecting the world models online to the data, which are maintained in a centralised storage as 3D spatio-temporal data cubes. It allows also non-experts to extract valuable information from EO data because data management, low-level interactions or specific software issues can be ignored. We discuss the concept of the proposed system, provide a technical implementation example and describe three use cases for extracting changes from EO images and demonstrate the usability also for non-EO, gridded, multi-temporal data sets (CORINE land cover). 相似文献