首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1803篇
  免费   190篇
  国内免费   198篇
测绘学   680篇
大气科学   54篇
地球物理   194篇
地质学   709篇
海洋学   123篇
天文学   154篇
综合类   155篇
自然地理   122篇
  2024年   5篇
  2023年   29篇
  2022年   29篇
  2021年   51篇
  2020年   79篇
  2019年   82篇
  2018年   48篇
  2017年   107篇
  2016年   71篇
  2015年   91篇
  2014年   101篇
  2013年   122篇
  2012年   127篇
  2011年   117篇
  2010年   95篇
  2009年   97篇
  2008年   115篇
  2007年   111篇
  2006年   107篇
  2005年   92篇
  2004年   73篇
  2003年   63篇
  2002年   56篇
  2001年   66篇
  2000年   39篇
  1999年   29篇
  1998年   35篇
  1997年   33篇
  1996年   18篇
  1995年   18篇
  1994年   15篇
  1993年   13篇
  1992年   13篇
  1991年   9篇
  1990年   12篇
  1989年   9篇
  1988年   7篇
  1987年   6篇
  1954年   1篇
排序方式: 共有2191条查询结果,搜索用时 188 毫秒
41.
As in all fields of sample analysis, reference materials play a large role in supporting measurements in the geosciences. While a rather large number of materials are in distribution (> 380), not all are equally effective or fit-for-purpose in supporting laboratory data quality and thereby assuring the desired comparability of measurements between laboratories. Equally important, reference values that are not fit-for-purpose cannot be used effectively to establish traceability links between laboratory measurements and national and international standards. The needed fitness-for-purpose is not achieved for reference values either when more than one reference value has been proposed and a consensus does not exist among users as to which should be used by all, or when reference value uncertainties are too large in comparison to those of routine laboratory measurements. The focus of this review will be, first to outline the current reality, and second to suggest ways in which certifications of RMs can be improved to provide reference values that are universally accepted and more fit-for-purpose in general laboratory use. The discussion will be illustrated largely by current uses of USGS BCR-1, NIST SRM 610 and IAEA NBS28, as these three materials are those for which the largest body of newly published data exists, according to recent bibliographies of the geoanalytical literature published annually in Geostandards Newsletter: The Journal of Geostandards and Geoanalysis.  相似文献   
42.
A new geochemical reference material, coral Porites sp. JCp-1 has been prepared by the Geological Survey of Japan (GSJ). Provisional values for twenty one major, minor and trace elements are presented. The homogeneity tests showed that all elements studied are considered to be homogeneously distributed.  相似文献   
43.
In this study, representative samples from thermal wells and springs were chemically analyzed and geothermometers were used to calculate the deep temperatures of geothermal reservoirs on the basis of water–mineral equilibrium. In some cases, however, the chemical components are not in equilibrium with the minerals in the reservoir. Therefore, log(Q/K) diagrams are used to study the chemical equilibrium for the minerals that are likely to participate. The Na–K–Mg triangular diagram is also applied to evaluate the equilibrium of water with reservoir rocks. Standard curves at the reference temperatures are prepared to reveal which type of silica geothermometer is appropriate for the specified condition. This study shows that water samples from geothermal wells W9 and W12 are in equilibrium with the selective minerals, and chalcedony may control the fluid–silica equilibrium. It is estimated that there is an exploitable low-temperature reservoir with possible temperatures of 80–90°C in the Guanzhong basin.  相似文献   
44.
国际地磁参考场资料在我国得到广泛应用。利用国际地磁参考场资料,我国学者研究了高斯分析、地球磁场模型及其源场可能位置、重磁关系、核幔耦合、地磁场能量、地球非偶极子磁场西向漂移等。在绘制中国地磁等值图中也利用了某些国际地磁参考场资料。  相似文献   
45.
变参考慢度Born近似傅氏偏移   总被引:1,自引:0,他引:1  
针对常规Born近似傅氏偏移方法对于剧烈横向变速介质不能精确成像的状况而提出了变参考慢度Born近似傅氏偏移,理论上解决了任意速度变化地质模型的偏移成像问题。此外,为进一步提高复杂地层的成像精度和波场延拓算子的稳定性,对散射波场的计算公式作了改进。将改进的方法运用于盐丘模型的正演和偏移试验,并与常规Born近似偏移方法相比较,可明显看出变参考慢度Born近似傅氏偏移方法在效果上要优于后者,其处理速度横向变化的能力大大增强。  相似文献   
46.
基于GPS基准站网的GPS测量   总被引:5,自引:0,他引:5  
采用基于GPS基准网的GPS测量可以提高GPS测量的可靠性和准确性 ,可以消除和减小GPS测量观测值中与时间和空间相关的大气误差和轨道误差的影响 ,使中、长距离快速静态定位和RTK动态定位成为现实 ,还具有可直接得到WGS84Z坐标等优点。本文介绍基于GPS基准站网的GPS测量 ,简要地论述GPS虚拟参考站法VRS和区域改正数法FKP的原理、方法和特点 ,以及目前实施中存在的一些问题  相似文献   
47.
A simple, rapid and precise method is described for determining trace elements by laser ablation (LA)-ICP-MS analysis in bulk geological materials that have been prepared as lithium borate glasses following standard procedures for XRF analysis. This approach reliably achieves complete sample digestion and provides for complementary XRF and LA-ICP-MS analysis of a full suite of major and trace elements from a single sample preparation. Highly precise analysis is enabled by rastering an ArF excimer laser (λ= 193nm) across fused samples to deliver a constant sample yield to the mass spectrometer without inter-element fractionation effects during each analysis. Capabilities of the method are demonstrated by determination of twenty five trace elements (Sc, Ti, V, Ga, Rb, Sr, Y, Zr, Nb, Cs, Ba, REE, Hf, Ta, Pb, Th and U) in a diverse range of geological reference materials that includes peridotites, basalts, granites, metamorphic rocks and sediments. More than 90% of determinations are indistinguishable from published reference values at the 95% confidence level. Systematic bias greater than 5% is observed for only a handful of elements (Zr, Nb and U) and may be attributed in part to inaccurate calibration values used for the NIST SRM 612 glass in the case of Zr and Nb. Detection limits for several elements, most notably La, are compromised at ultra-trace levels by impurities in the lithium borate flux but can be corrected for by subtracting appropriate procedural blanks. Reliable Pb analysis has proved problematic due to variable degrees of contamination introduced during sample polishing prior to analysis and from Pt-crucibles previously used to fuse Pb-rich samples. Scope exists for extending the method to include internal standard element/isotope spiking, particularly where integrated XRF analysis is not available to characterise major and trace elements in the fused lithium borate glasses prior to LA-ICP-MS analysis.  相似文献   
48.
The geochemical reference material BHVO-1 was analysed by a variety of techniques over a six year period. These techniques included inductively coupled plasma-mass spectrometry and atomic emission spectroscopy (ICP-MS and ICP-AES, respectively), laser ablation ICP-MS and spark source mass spectroscopy. Inconsistencies between the published consensus values reported by Gladney and Roelandts (1988, Geostandards Newsletter) and the results of our study are noted for Rb, Y, Zr, Pb and Th. The values reported here for Rb, Y, Zr and Pb are generally lower, while Th is higher than the consensus value. This is not an analytical artefact unique to the University of Notre Dame ICP-MS facility, as most of the BHVO-1 analyses reported over the last ten to twenty years are in agreement with our results. We propose new consensus values for each of these elements as follows: Rb = 9.3 ± 0.2 μg g-1 (compared to 11 ± 2 μg g-1), Y = 24.4 ± 1.3 μg g-1 (compared to 27.6 ± 1.7 μg g-1), Zr = 172 ± 10 μg g-1 (compared to 179 ± 21 μg g-1), Pb = 2.2 ± 0.2 μg g-1 (compared to 2.6 ± 0.9 μg g-1) and Th = 1.22 ± 0.02 μg g-1 (compared to 1.08 ± 0.15 μg g-1).  相似文献   
49.
Development of Geological Data Warehouse   总被引:2,自引:0,他引:2  
Data warehouse (DW), a new technology invented in 1990s, is more useful for integrating and analyzing massive data than traditional database. Its application in geology field can be divided into 3 phrases: 1992-1996, commercial data warehouse (CDW) appeared; 1996-1999, geological data warehouse (GDW) appeared and the geologists or geographers realized the importance of DW and began the studies on it, but the practical DW still followed the framework of DB; 2000 to present, geological data warehouse grows, and the theory of geo-spatial data warehouse (GSDW) has been developed but the research in geological area is still deficient except that in geography. Although some developments of GDW have been made, its core still follows the CDW-organizing data by time and brings about 3 problems: difficult to integrate the geological data, for the data feature more space than time; hard to store the massive data in fifferent levels due to the same reason; hardly support the spatial analysis if the data are organized by time as CDW does. So the GDW should be redesigned by organizing data by scale in order to store mass data in different levels and synthesize the data in different granularities, and choosing space control points to replace the former time control points so as to integrate different types of data by the method of storing one type data as one layer and then to superpose the layers. In addition, data cube, a wide used technology in CDW, will be no use in GDW, for the causality among the geological data is not so obvious as commercial data, as the data are the mixed result of many complex rules, and their analysis needs the special geological methods and software; on the other hand, data cube for mass and complex geo-data will devour too much store space to be practical. On this point, the main purpose of GDW may be fit for data integration unlike CDW for data analysis.  相似文献   
50.
 The traditional remove-restore technique for geoid computation suffers from two main drawbacks. The first is the assumption of an isostatic hypothesis to compute the compensation masses. The second is the double consideration of the effect of the topographic–isostatic masses within the data window through removing the reference field and the terrain reduction process. To overcome the first disadvantage, the seismic Moho depths, representing, more or less, the actual compensating masses, have been used with variable density anomalies computed by employing the topographic–isostatic mass balance principle. In order to avoid the double consideration of the effect of the topographic–isostatic masses within the data window, the effect of these masses for the used fixed data window, in terms of potential coefficients, has been subtracted from the reference field, yielding an adapted reference field. This adapted reference field has been used for the remove–restore technique. The necessary harmonic analysis of the topographic–isostatic potential using seismic Moho depths with variable density anomalies is given. A wide comparison among geoids computed by the adapted reference field with both the Airy–Heiskanen isostatic model and seismic Moho depths with variable density anomaly and a geoid computed by the traditional remove–restore technique is made. The results show that using seismic Moho depths with variable density anomaly along with the adapted reference field gives the best relative geoid accuracy compared to the GPS/levelling geoid. Received: 3 October 2001 / Accepted: 20 September 2002 Correspondence to: H.A. Abd-Elmotaal  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号