首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2914篇
  免费   718篇
  国内免费   1460篇
测绘学   83篇
大气科学   2342篇
地球物理   1114篇
地质学   757篇
海洋学   220篇
天文学   9篇
综合类   146篇
自然地理   421篇
  2024年   27篇
  2023年   91篇
  2022年   120篇
  2021年   177篇
  2020年   175篇
  2019年   191篇
  2018年   188篇
  2017年   212篇
  2016年   169篇
  2015年   204篇
  2014年   218篇
  2013年   426篇
  2012年   214篇
  2011年   220篇
  2010年   174篇
  2009年   227篇
  2008年   198篇
  2007年   277篇
  2006年   256篇
  2005年   223篇
  2004年   161篇
  2003年   138篇
  2002年   111篇
  2001年   92篇
  2000年   93篇
  1999年   74篇
  1998年   75篇
  1997年   57篇
  1996年   54篇
  1995年   47篇
  1994年   53篇
  1993年   38篇
  1992年   22篇
  1991年   23篇
  1990年   13篇
  1989年   10篇
  1988年   19篇
  1987年   7篇
  1986年   3篇
  1985年   4篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1954年   1篇
排序方式: 共有5092条查询结果,搜索用时 15 毫秒
841.
利用二维有限元数值模型,结合断层滑移弱化摩擦准则对断层滑动规律以及应力扰动对其影响进行了研究.数值计算结果表明,在均匀应力分布情况下, 平面断层滑动显示出典型的特征地震规律,断层面上的应力扰动对断层滑动规律产生影响,压应力增加明显延迟地震的发生时间,并增加地震释放的能量.应力扰动发生在地震破裂临界区时的影响比在震前滑移区时的影响显著.当发生在地震滑移区时,若应力扰动足够大,则压应力增大会造成地震发生时部分动力断层被暂时锁住,使得地震释放的能量变小,但可增加后续地震的能量; 而压应力减小则可导致地震规律产生更加复杂的变化,会即时触发地震.如果应力扰动发生在一个地震周期的早期,则触发的地震较小,但可导致随后的地震提前发生; 如果应力扰动发生在一个地震周期的后期,则会触发大地震.当应力扰动位于震前滑移区或破裂临界区时,小的扰动也可能产生类似的效果.应力扰动产生越晚,这种影响也越明显.应力扰动发生在破裂临界区的影响最明显.应力扰动的影响一般主要集中在应力发生扰动后的1—2个地震周期内.后续地震基本恢复无应力扰动时的特征地震规律.   相似文献   
842.
Sediment resuspension under action of wind in Taihu Lake,China   总被引:2,自引:0,他引:2  
A field study was undertaken to investigate the changes of the current speed, wave parameters and sediment resuspension under different wind speeds in the Taihu Lake. The Acoustic Doppler Current Profi...  相似文献   
843.
XIE Tao  LU Jun 《地震地质》2016,38(4):922-936
Current leakage,metallic conductor,and local anomalous resistivity body are main disturbance sources which affect the successive observation of apparent resistivity in stations,besides the observing system failure.We construct a finite element model using a 3-layered horizontal medium to discuss the dynamic characteristics of disturbances caused by metal conductor and local anomalous resistivity body in the measuring filed.The numerical results show that low resistivity source which is located in areas where the sensitivity coefficient is positive will cause decline on apparent resistivity observation.While low resistivity source will cause increase when it is located in areas where the sensitivity coefficient is negative.Disturbance caused by high resistivity source is opposite to the one from low resistivity source.The general dynamic feature of disturbance is that the disturbance amplitude increases as the resistivity of shallow layer decreases,while the amplitude declines when the shallow layer's resistivity increases.For the measuring direction which has normal annual variation form,low resistivity source which is located in area where the sensitivity coefficient is positive will increase the annual variation amplitude,while it will reduce annual amplitude when it is in a negative sensitivity coefficient area.Annual amplitude changes caused by high resistivity source are opposite to the changes caused by low resistivity source.For the measuring direction which has abnormal annual variation form,dynamic annual feature is opposite to the one in direction of normal annual variation form.If the dynamic feature is opposite to the annual variation and disturbance amplitude is also greater than annual amplitude,the annual variation will change direction.Disturbance amplitude from metallic conductor is affected by the resistivity and cross-section area,the lower of the resistivity and the larger of the cross-section area,the greater of the disturbance amplitude.  相似文献   
844.
Field, laboratory, and numerical modelling research are increasingly demonstrating the potential of riparian tree colonization and growth to influence fluvial dynamics and the evolution of fluvial landforms. This paper jointly analyses multi‐temporal, multispectral ASTER data, continuous river stage and discharge data, and field observations of the growth rates of the dominant riparian tree species (Populus nigra) along a 21 km reach of the Tagliamento River, Italy. Research focuses on the period 2004–2009, during which there was a bankfull flood on 24 October 2004, followed by 2 years with low water levels, nearly 2 years with only modest flow pulses, and then a final period from 15 August 2008 that included several intermediate to bankfull flow events. This study period of increasing flow disturbance allows the exploration of vegetation dynamics within the river's active corridor under changing flow conditions. The analysis demonstrates the utility of ASTER data for investigating vegetation dynamics along large fluvial corridors and reveals both spatial and temporal variations in the expansion, coalescence, and erosion of vegetated patches within the study reach. Changes in the extent of the vegetated area and its dynamics vary along the study reach. In sub‐reaches where riparian tree growth is vigorous, the vegetated area expands rapidly during time periods without channel‐shaping flows, and is subsequently able to resist erosion by bankfull floods. In contrast, in sub‐reaches where tree growth is less vigorous, the vegetated area expands at a slower rate and is more readily re‐set by bankfull flood events. This illustrates that the rate of growth of riparian trees is crucial to their ability to contribute actively to river corridor dynamics. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
845.
Field and laboratory studies have indicated that rock fragments in the topsoil may have a large impact on soil properties, soil quality, hydraulic, hydrological and erosion processes. In most studies, the rock fragments investigated still remain visible at the soil surface and only properties of these visible rock fragments are used for predicting runoff and soil loss. However, there are indications that rock fragments completely incorporated in the topsoil could also significantly influence the percolation and water distribution in stony soils and therefore, also infiltration, runoff and soil loss rates. Therefore, in this study interrill laboratory experiments with simulated rainfall for 60 min were conducted to assess the influence of subsurface rock fragments incorporated in a disturbed silt loam soil at different depths below the soil surface (i.e. 0.001, 0.01, 0.05 and 0.10 m), on infiltration, surface runoff and interrill erosion processes for small and large rock fragment sizes (i.e. mean diameter 0.04 and 0.20 m, respectively). Although only small differences in infiltration rate and runoff volume are observed between the soil without rock fragments (control) and the one with subsurface rock fragments, considerable differences in total interrill soil loss are observed between the control treatment and both contrasting rock fragments sizes. This is explained by a rapid increase in soil moisture in the areas above the rock fragments and therefore a decrease in topsoil cohesion compared with the control soil profile. The observed differences in runoff volume and interrill soil loss between the control plots and those with subsurface rock fragments is largest after a cumulative rainfall (Pcum) of 11 mm and progressively decreases with increasing Pcum. The results highlight the impacts and complexity of subsurface rock fragments on the production of runoff volume and soil loss and requires their inclusion in process‐based runoff and erosion models. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
846.
Rainfall threshold (RT) method is one of the evolving flood forecasting approaches. When the cumulative rainfall depth for a given initial soil moisture condition intersects the threshold rainfall curve, the peak discharge is expected to be equal or greater than the threshold discharge for flooding at the target site. Besides the total rainfall depth, spatial and temporal distribution of rainfall impacts the flood peak discharge and the time to peak. To revisit a previous study conducted by the authors, in which spatially independent rainfall pattern was assumed, the spatial distribution of rainfall was simulated following a Monte Carlo approach. The structure of the spatial dependence among sub‐watersheds' rainfalls was taken into account under three different scenarios, namely independent, bivariate copula (2copula) and multivariate Gaussian copula (MGC). For each set of generated random dimensionless rainfalls, the probabilistic RT curves were derived for dry moisture condition. Results were evaluated with both historical and simulated events. For the simulated events, threshold curves were assessed by means of categorical statistics, such as hit rate, false rate and critical success index (CSI). Results revealed that the best performance based on the CSI criterion corresponded to 50% curve in 2copula and MGC scenarios as well as 90% curve in the independent scenario. The recognition of 50% curve in 2copula and MGC scenarios is in agreement with our expectations that the mean probable curve should have the best performance. Moreover, the proposed inclusion of spatially dependent rainfall scenario improved the performance of RT curves by about 25% in comparison with the presumed spatially uniform rainfall scenario. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
847.
The temporal‐spatial resolution of input data‐induced uncertainty in a watershed‐based water quality model, Hydrologic Simulation Program‐FORTRAN (HSPF), is investigated in this study. The temporal resolution‐induced uncertainty is described using the coefficient of variation (CV). The CV is found to decrease with decreasing temporal resolution and follow a log‐normal relation with time interval for temperature data while it exhibits a power‐law relation for rainfall data. The temporal‐scale uncertainties in the temperature and rainfall data follow a general extreme value distribution and a Weibull distribution, respectively. The Nash‐Sutcliffe coefficient (NSC) is employed to represent the spatial resolution induced uncertainty. The spatial resolution uncertainty in the dissolved oxygen and nitrate‐nitrogen concentrations simulated using HSPF is observed to follow a general extreme value distribution and a log‐normal distribution, respectively. The probability density functions (PDF) provide new insights into the effect of temporal‐scale and spatial resolution of input data on uncertainties involved in watershed modelling and total maximum daily load calculations. This study exhibits non‐symmetric distributions of uncertainty in water quality modelling, which simplify weather and water quality monitoring and reducing the cost involved in flow and water quality monitoring. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
848.
Earthquake-related electromagnetic observation aims at finding abnormal electromagnetic variation associated with earthquake possibly. The existing studies have proved that this method is, to a large extent, effective in short-term and impending earthquake predication. This paper summarizes progress and discusses some related problems in this field. Some requirements for observation system have been proposed to improve monitoring level. As a case observation using the reformed observation system in Jinghai seismologic station, Tianjin, some results are given.  相似文献   
849.
信阳地震台水管倾斜仪EW分量2016年5月出现加速E倾变化,为确定异常性质及产生原因,从观测洞室环境、仪器观测系统、气象数据、环境干扰等进行调查,并采用有限元法和不规则荷载模型,计算台站附近的信阳林业学校拆迁荷载变化对水管倾斜仪观测的影响,最终判定本次异常为林校拆迁所致。  相似文献   
850.
Sustainable water resources management require scientifically sound information on precipitation, as it plays a key role in hydrological responses in a catchment. In recent years, mesoscale weather models in conjunction with hydrological models have gained great attention as they can provide high‐resolution downscaled weather variables. Many cumulus parameterization schemes (CPSs) have been developed and incorporated into three‐dimensional Pennsylvania State University/National Center for Atmospheric Research (PSU/NCAR) mesoscale model 5 (MM5). This study has performed a comprehensive evaluation of four CPSs (the Anthes–Kuo, Grell, Betts–Miller and Kain–Fritsch93 schemes) to identify how their inclusion influences the mesoscale model's precipitation estimation capabilities. The study has also compared these four CPSs in terms of variability in rainfall estimation at various horizontal and vertical levels. For this purpose, the MM5 was nested down to resolution of 81 km for Domain 1 (domain span 21 × 81 km) and 3 km for Domain 4 (domain span 16 × 3 km), respectively, with vertical resolutions at 23, 40 and 53 vertical levels. The study was carried out at the Brue catchment in Southwest England using both the ERA‐40 reanalysis data and the land‐based observation data. The performances of four CPs were evaluated in terms of their ability to simulate the amount of cumulative rainfall in 4 months in 1995 representing the four seasonal months, namely, January (winter), March (spring), July (summer) and October (autumn). It is observed that the Anthes–Kuo scheme has produced inferior precipitation values during spring and autumn seasons while simulations during winter and summer were consistently good. The Betts–Miller scheme has produced some reasonable results, particularly at the small‐scale domain (3 km grid size) during winter and summer. The KF2 scheme was the best scheme for the larger‐scale (81 km grid size) domain during winter season at both 23 and 53 vertical levels. This scheme tended to underestimate rainfall for other seasons including the small‐scale domain (3 km grid size) in the mesoscale. The Grell scheme was the best scheme in simulating rainfall rates, and was found to be superior to other three schemes with consistently better results in all four seasons and in different domain scales. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号