首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1478篇
  免费   215篇
  国内免费   331篇
测绘学   16篇
大气科学   333篇
地球物理   596篇
地质学   363篇
海洋学   426篇
天文学   4篇
综合类   93篇
自然地理   193篇
  2024年   18篇
  2023年   28篇
  2022年   57篇
  2021年   54篇
  2020年   45篇
  2019年   60篇
  2018年   50篇
  2017年   60篇
  2016年   57篇
  2015年   61篇
  2014年   84篇
  2013年   100篇
  2012年   88篇
  2011年   82篇
  2010年   86篇
  2009年   90篇
  2008年   118篇
  2007年   107篇
  2006年   116篇
  2005年   80篇
  2004年   76篇
  2003年   61篇
  2002年   67篇
  2001年   55篇
  2000年   38篇
  1999年   53篇
  1998年   34篇
  1997年   33篇
  1996年   29篇
  1995年   12篇
  1994年   26篇
  1993年   14篇
  1992年   19篇
  1991年   8篇
  1990年   10篇
  1989年   5篇
  1988年   6篇
  1987年   2篇
  1986年   3篇
  1985年   6篇
  1984年   4篇
  1983年   4篇
  1982年   4篇
  1981年   6篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1973年   1篇
排序方式: 共有2024条查询结果,搜索用时 278 毫秒
861.
基于地形指数的流域非点源磷素输出关键源区识别   总被引:2,自引:1,他引:1       下载免费PDF全文
王妞  陆海明  邹鹰  陈晓燕  朱乾德 《水文》2016,36(2):12-16
以非点源污染形式输出的磷素是导致水体富营养化的主要原因,识别流域磷素输出的关键源区并进行重点整治是控制流域非点源磷素污染的重要手段。以修正的磷指数法为基础,引入地形指数因子,建立了流域非点源磷素输出风险评价方法,并以位于江淮丘陵区的西源流域为例开展了磷素输出风险评价,识别了该流域磷素输出的关键源区。结果表明,西源流域磷素输出关键源区主要集中在下游河道、沟渠两侧农田区域,占流域总面积的8%。  相似文献   
862.
Numerical simulations are performed to investigate the influence of variable front slopes on flow evolution and waveform inversion of a depression ISW (internal solitary wave) over an idealized shelf with variable front slopes. A finite volume based on Cartesian grid method is adopted to solve the Reynolds averaged Navier-Stokes equations using a k-ε model for the turbulent closure. Numerical results exhibit the variations of several pertinent properties of the flow field, in the case with or without waveform inversion on the horizontal plateau of an obstacle. The clockwise vortex is stronger than the counterclockwise one, almost throughout the wave-obstacle interaction. Analysis of the turbulent energy budget reveals that the turbulent production term in the governing equations dominates the wave evolution during a wave-obstacle interaction; otherwise the buoyancy production term and the dissipation term due to viscosity within turbulent eddies play a major role in energy dissipation. In addition, the front slope affects mainly the process and reflection of the wave evolution but has less influence than other physical parameters. Moreover, total wave energy of the leading crest is smaller than that of the leading trough even in the cases with waveform inversion on the plateau.  相似文献   
863.
Karst landscapes underlain with phosphatic limestones are now recognized to be an important contributor of fluvial phosphorus (P) to coastal waters. Specifically, karst agroecosystems may be a hotspot for dissolved reactive P (DRP) due to chronic over-application of organic and inorganic fertilizers that create legacy P accumulation in surface soils. Nevertheless, few studies have assessed the hydrologic controls on DRP transport in these systems at the watershed scale, which is the focus of this study. We analysed soil moisture, soil water extractable P, and storm event hydrologic and water quality data from a small heterogenous karst watershed (10.7 km2) in the Inner-Bluegrass Region of Central Kentucky, USA. Four storm events were sampled in winter, 2020 and were analysed for flow pathways using hydrograph recession analysis and water source connectivity using a tracer-based unmixing model. Based on hydrograph separation results, multiple linear regression analysis was performed to assess drivers of DRP concentrations and loadings. Soil water extractable P results showed stark vertical gradients with greater concentrations at both the surface and deeper soil zones, and minimum concentrations in the root zone. Results for the storm event analysis showed that water source connectivity provided superior prediction of DRP concentrations over the flow pathway analysis, which reflected the heterogeneity of karst maturity masking intermediate flow pathways. Findings from the MLR and loading analysis suggest waters sourced from the soil/epikarst produced significantly higher loadings compared with phreatic and precipitation water source in the three largest events, although concentrations fell between the phreatic (low) and precipitation (high) sources. Findings highlight variable activation of matrix-macropore exchange at different depths throughout the event. Collectively these results suggest existing models and approaches to assess karst hydrology need revision to improve management strategies in this critical landscape.  相似文献   
864.
This paper investigates particulate phosphorus (PP) and soluble reactive phosphorus (SRP) concentrations at the outlet of a small (5 km²) intensively farmed catchment to identify seasonal variability of sources and transport pathways for these two phosphorus forms. The shape and direction of discharge‐concentration hystereses during floods were related to the hydrological conditions in the catchment during four hydrological periods. Both during flood events and on an annual basis, contrasting export dynamics highlighted a strong decoupling between SRP and PP export. During most flood events, discharge‐concentration hystereses for PP were clockwise, indicating mobilization of a source located within or near the stream channel. Seasonal variability of PP export was linked to the availability of stream sediments and the export capacity of the stream. In contrast, hysteresis shapes for SRP were anticlockwise, which suggests that SRP was transferred to the stream via subsurface flow. Groundwater rise in wetland soils was likely the cause of this transfer, through the hydrological connectivity it created between the stream and P‐rich soil horizons. SRP concentrations were the highest when the relative contribution of deep groundwater from the upland domain was low compared with wetland groundwater. Hence, soils from non‐fertilized riparian wetlands seemed to be the main source of SRP in the catchment. This conceptual model of P transfer with distinct hydrological controls for PP and SRP was valid throughout the year, except during spring storm events, during which PP and SRP exports were synchronized as a consequence of overland flow and erosion on hillslopes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
865.
Glacier‐fed river thermal regimes vary markedly in space and time; however, knowledge is limited on the fundamental processes controlling alpine stream temperature dynamics. To address the research gap, this study quantified heat exchanges at the water surface and bed of the Taillon glacier‐fed stream, French Pyrénées. Hydro‐meteorological observations were recorded at 15‐min intervals across two summer melt seasons (2010 and 2011), and energy balance components were measured or estimated based on site‐specific data. Averaged over both seasons, net radiation was the largest heat source (~80% of total flux); sensible heat (~13%) and friction (~3%) were also sources, while heat exchange across the channel–streambed interface was negligible (<1%). Latent heat displayed distinct interannual variability and contributed 5% in 2010 compared with 0.03% in 2011. At the sub‐seasonal scale, latent heat shifted from source to sink, possibly linked to the retreating valley snowline that changed temperature and humidity gradients. These findings represent the first, multiyear study of the heat exchange processes operating in a glacier‐fed stream, providing fundamental process understanding; the research highlights the direct control antecedent (winter) conditions that have on energy exchange and stream temperature during summer months. In particular, the timing and volume of snowfall/snowmelt can drive thermal dynamics by the following: (1) altering the length of the stream network exposed to the atmosphere and (2) controlling the volume and timing of cold water advection downstream. Finally, this study highlights the need to develop long‐term hydro‐meteorological monitoring stations to improve the understanding of these highly dynamic, climatically sensitive systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
866.
Bank erosion is the main source of suspended sediment (SS) and diffuse total phosphorus (TP) in many lowland catchments. This study compared a physically based sediment routing method (Physical method), which distinguishes between stream bed and bank erosion, with the original sediment routing method (Original method) within the Soil and Water Assessment Tool (SWAT) version 2009, for simulating SS and TP losses from a lowland catchment. A SWAT model was set up for the lowland River Odense catchment in Denmark and calibrated against observed stream flow and phosphate (PO4) loads. On the basis of an initial calibration of hydrological and PO4 parameters, the SWAT model with the Original method (Original model) and the SWAT model with the Physical method (Physical model) were calibrated separately against observed SS and TP loads. The SWAT model simulated daily stream flow well but underestimated PO4 loads. The Physical model simulated daily SS and TP better than the Original model. The simulated contribution of bank erosion to SS in the Physical model (99%) was close to the estimated contribution from in situ erosion measurements (90–94%). Compared with the Original method, the Physical method is not only more conceptually correct but also improves model performance. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
867.
Fluctuations of groundwater levels were used to predict soluble phosphorus concentrations. In‐situ observations showed a decrease in soluble phosphorus during groundwater recession and an increase with groundwater rise. A spatial analysis of the simulated soluble phosphorus and groundwater levels indicated similarity of patterns (spatial correlation) 99% of the time. A geographically weighted multivariate analysis of soluble phosphorus using groundwater levels, phosphorus levels of the Kissimmee River, and distance from the Kissimmee River as predictors showed a goodness of fit (R2) ranging from 0.2 to 0.7. Results indicated no significant difference between the simulated and observed soluble phosphorus levels at a p value of 0.01. Among the parameters, the groundwater level explained 70% of the soluble phosphorus variability. The distance to surface waterbodies and their phosphorus levels had significant weights only within a 5‐km range from the waterbody. A model generalization is further required to simulate the spatiotemporal groundwater–phosphorus dynamics over meaningful temporal ranges – at least for 3 to 5 years – for conclusiveness of the data. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
868.
Ferric iron is present in all metamorphic rocks and has the ability to significantly affect their phase relations. However, the influence of ferric iron has commonly been ignored, or at least not been considered quantitatively, mainly because its abundance in rocks and minerals is not determined by routine analytical techniques. Mineral equilibria calculations that explicitly account for ferric iron can be used to examine its effect on the phase relations in rocks and, in principle, allow the estimation of the oxidation state of rocks. This is illustrated with calculated pseudosections in NCKFMASHTO for mafic and pelitic rock compositions. In addition, it is shown that ferric iron has the capacity to significantly increase the stability of the corundum + quartz assemblage, making it possible for this assemblage to exist at crustal PT conditions in oxidized rocks of appropriate composition.  相似文献   
869.
870.
Abstract

Hydrological processes of the wetland complex in the Prairie Pothole Region (PPR) are difficult to model, partly due to a lack of wetland morphology data. We used Light Detection And Ranging (LiDAR) data sets to derive wetland features; we then modelled rainfall, snowfall, snowmelt, runoff, evaporation, the “fill-and-spill” mechanism, shallow groundwater loss, and the effect of wet and dry conditions. For large wetlands with a volume greater than thousands of cubic metres (e.g. about 3000 m3), the modelled water volume agreed fairly well with observations; however, it did not succeed for small wetlands (e.g. volume less than 450 m3). Despite the failure for small wetlands, the modelled water area of the wetland complex coincided well with interpretation of aerial photographs, showing a linear regression with R2 of around 0.80 and a mean average error of around 0.55 km2. The next step is to improve the water budget modelling for small wetlands.

Editor Z.W. Kundzewicz; Associate editor X. Chen

Citation Huang, S.L., Young, C., Abdul-Aziz, O.I., Dahal, D., Feng, M., and Liu, S.G., 2013. Simulating the water budget of a Prairie Potholes complex from LiDAR and hydrological models in North Dakota, USA. Hydrological Sciences Journal, 58 (7), 1434–1444.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号