首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12418篇
  免费   2885篇
  国内免费   6643篇
测绘学   36篇
大气科学   1篇
地球物理   389篇
地质学   20190篇
海洋学   103篇
综合类   1082篇
自然地理   145篇
  2024年   91篇
  2023年   284篇
  2022年   456篇
  2021年   565篇
  2020年   510篇
  2019年   641篇
  2018年   544篇
  2017年   698篇
  2016年   813篇
  2015年   759篇
  2014年   1075篇
  2013年   897篇
  2012年   1129篇
  2011年   1023篇
  2010年   975篇
  2009年   820篇
  2008年   752篇
  2007年   862篇
  2006年   803篇
  2005年   716篇
  2004年   731篇
  2003年   648篇
  2002年   626篇
  2001年   732篇
  2000年   676篇
  1999年   655篇
  1998年   628篇
  1997年   594篇
  1996年   520篇
  1995年   412篇
  1994年   349篇
  1993年   270篇
  1992年   214篇
  1991年   160篇
  1990年   96篇
  1989年   82篇
  1988年   61篇
  1987年   39篇
  1986年   18篇
  1985年   13篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1979年   3篇
  1978年   3篇
排序方式: 共有10000条查询结果,搜索用时 421 毫秒
111.
地学“开合律”及其在造山带研究中的意义   总被引:14,自引:2,他引:12  
“开合律”是地学辩证法基本规律之一。本文概述了它的内容与特点,阐明它在造山带研究中的意义及运用它指导造山带研究的步骤,并根据目前已总结的5种“开”、“合”类型相应地提出了5种造山带类型。  相似文献   
112.
The anodic and cathodic behaviour of pyrite with clay and different carbon coatings of activated carbon, graphite and carbonaceous matter in cyanide medium was investigated using the potentiodynamic method. The presence of clay coating did not change the polarisation curve appearance for either the anodic oxidation of pyrite or the cathodic reduction of oxygen or the potential of the current plateau, but only decreased the plateau current especially at a higher coating thickness. The presence of the carbon coatings marginally shifted the rest potential for pyrite to a more anodic position and slightly changed the polarisation curve appearance for pyrite oxidation. The current density for pyrite oxidation largely increased in the presence of the carbon coatings, the potential at the plateau shifted to more cathodic positions, and the plateau width became smaller. These effects became more noticeable at a higher coating thickness. The activated carbon, graphite and carbonaceous matter coatings performed similarly in affecting pyrite oxidation at a similar thickness. The carbon coatings significantly increased the limiting current densities for oxygen reduction on pyrite, and the limiting current plateau became steeper at a higher coating thickness. The carbon coatings increased the limiting current density for oxygen reduction to a similar extent at a low coating thickness, but increased to varied extents at a higher coating thickness. The carbon coatings also greatly increased the cathodic current density for gold reduction on pyrite. The enhancement of pyrite oxidation and oxygen or gold reduction on pyrite by the carbon coatings was likely attributed to the electrochemical interaction between pyrite and the carbon materials with electron-rich surfaces and high conductivity. The presence of the carbon coatings significantly increased the oxidation of pyrite in aerated cyanide solutions and the preg-robbing of pyrite especially at a higher coating thickness.  相似文献   
113.
The Taojiang Mn ore deposit was exploited in the early 1960s, and waste rocks were developed since then. Because the Mn ores were hosted within the metal-enriched black shales (Peng et al., 2004), the continuous mining has led to the exposure of an immense quality of black shales, which might cause serious impacts on environments. The present study deals with this environmental issue with samples from the waste rocks, and from the surrounding soils and surface water. The mineralogy of the waste rock was studied using EMPA, then a large number of elements in all waste rock, soil, and water samples were analyzed at a wide range of concentrations with high accuracy using an Elan6000 ICP-MS machine at Guangzhou Institute of Geochemistry, Chinese Academy of Sciences. The waste rock is composed mostly of black shales, with minor Mn carbonates. Both black shales and Mn carbonates of the waste rock contain many sulfide minerals, mainly pyrite, with minor galena, sphalerite, chalcopyrite, and others. The waste rocks are enriched in many metals including Sc, V, Cr, Co, Ni, Fe, Mn, Cu, Zn, Pb, Th, U, Mo, Sb, Sn, Tl, and others, and the metals are mostly hosted within the sulfides. Weathering of waste rocks might cause emission of the following metals: V, Cd, Ni, Th, U, Mo, Sb, Tl, Sc, Cr, Cu, Zn, Sn, and minor Co, and Pb. The surrounding soils are highly enriched in Cr, Co, Cu, Zn, Mn, Mo, Cd, Tl, and Pb, with the enrichment factors of 2.67.3.8, 7.26, 7.27, 8.2, 5.7, 13, and 5.4, respectively. The element ratios (Rb/Cs, Fe/Mn, Nb/Zr, Hf/Zr, and Ba/Sr) and REE distribution patterns of the soils are similar to those of the waste rocks and bedrocks.  相似文献   
114.
A new tectonic scenario for the Sanandaj–Sirjan Zone (Iran)   总被引:3,自引:0,他引:3  
Recent geochemical studies of volcanic rocks forming part of the ophiolites within the Zagros and Naien-Baft orogen indicate that most of them were developed as supra-subduction ophiolites in intra-oceanic island arc environments. Intra-oceanic island arcs and ophiolites now forming the Naien-Baft zone were emplaced southwestward onto the northeastern margin of the South Sanandaj–Sirjan Zone, while those now in the High Zagros were emplaced southwestward onto the northern margin of Arabia. Thereafter, subduction continued on opposite sides of the remnant oceans. The floor of Neo-Tethys Ocean was subducted at a low angle beneath the entire Sanandaj–Sirjan Zone, and the floor of the Naien-Baft Ocean was subducted beneath the Central Iranian Micro-continent. The Naien-Baft Ocean extended into North-West Iran only temporarily. This failed ocean arm (between the Urumieh-Dokhtar Magmatic Assemblage and the main Zagros Thrust) was filled by thick Upper Triassic–Upper Jurassic sediments. The Naien-Baft Ocean finally closed in the Paleocene and Neo-Tethys closed in the Early to Middle Eocene. After Arabia was sutured to Iran, the Urumieh-Dokhtar Magmatic Assemblage recorded slab break-off in the Middle Eocene.  相似文献   
115.
Abstract. Major and trace element contents are reported for Permian manganese ore and associated greenstone from the Ananai manganese deposit in the Northern Chichibu Belt, central Shikoku, Japan. The manganese deposit occurs between greenstone and red chert, or among red chert beds. Chemical compositions of manganese ore are characterized by enrichments in Mn, Ca, P, Co, Ni, Zn, Sr and Ba, and negative Ce and positive Eu anomalies relative to post-Archean average Australian Shale (PAAS). Geochemical features of the manganese ore are similar to those of modern submarine hydrother-mal manganese deposits from volcanic arc or hotspot setting. In addition, geochemical characteristics of the greenstone closely associated with the Ananai manganese deposit are analogous to those of with-in plate alkaline basalt (WPA). Consequently, the Ananai manganese deposit was most likely formed by hydrothermal activity related to hotspot volcanism in the Panthalassa Ocean during the Middle Permian. This is the first report documenting the terrestrially-exposed manganese deposit that was a submarine precipitate at hotspot.  相似文献   
116.
Great earthquakes of variable magnitude at the Cascadia subduction zone   总被引:1,自引:0,他引:1  
Comparison of histories of great earthquakes and accompanying tsunamis at eight coastal sites suggests plate-boundary ruptures of varying length, implying great earthquakes of variable magnitude at the Cascadia subduction zone. Inference of rupture length relies on degree of overlap on radiocarbon age ranges for earthquakes and tsunamis, and relative amounts of coseismic subsidence and heights of tsunamis. Written records of a tsunami in Japan provide the most conclusive evidence for rupture of much of the plate boundary during the earthquake of 26 January 1700. Cascadia stratigraphic evidence dating from about 1600 cal yr B.P., similar to that for the 1700 earthquake, implies a similarly long rupture with substantial subsidence and a high tsunami. Correlations are consistent with other long ruptures about 1350 cal yr B.P., 2500 cal yr B.P., 3400 cal yr B.P., 3800 cal yr B.P., 4400 cal yr B.P., and 4900 cal yr B.P. A rupture about 700-1100 cal yr B.P. was limited to the northern and central parts of the subduction zone, and a northern rupture about 2900 cal yr B.P. may have been similarly limited. Times of probable short ruptures in southern Cascadia include about 1100 cal yr B.P., 1700 cal yr B.P., 3200 cal yr B.P., 4200 cal yr B.P., 4600 cal yr B.P., and 4700 cal yr B.P. Rupture patterns suggest that the plate boundary in northern Cascadia usually breaks in long ruptures during the greatest earthquakes. Ruptures in southernmost Cascadia vary in length and recurrence intervals more than ruptures in northern Cascadia.  相似文献   
117.
Abstract. Lermontovskoe tungsten skarn deposit in central Sikhote-Alin is concluded to have formed at 132 Ma in the Early Cretaceous, based on K-Ar age data for muscovite concentrates from high-grade scheelite ore and greisenized granite. Late Paleozoic limestone in Jurassic - early Early Cretaceous accretionary complexes was replaced during hydrothermal activity related to the Lermontovskoe granodiorite stock of reduced type. The ores, characterized by Mo-poor scheelite and Fe3+- poor mineral assemblages, indicate that this deposit is a reduced-type tungsten skarn (Sato, 1980, 1982), in accordance with the reduced nature of the granodiorite stock.
The Lermontovskoe deposit, the oldest mineralization so far known in the Sikhote-Alin orogen, formed in the initial stage of Early Cretaceous felsic magmatism. The magmatism began shortly after the accretionary tectonics ceased, suggesting an abrupt change of subduction system. Style of the Early Cretaceous magmatism and mineralization is significantly different between central Sikhote-Alin and Northeast Japan; reduced-type and oxidized-type, respectively. The different styles may reflect different tectonic environments; compressional and extensional, respectively. These two areas, which were closer together before the opening of the Japan Sea in the Miocene, may have been juxtaposed under a transpressional tectonic regime after the magmatism.  相似文献   
118.
Abstract. Denggezhuang gold deposit is an epithermal gold‐quartz vein deposit in northern Muru gold belt, eastern Shandong, China. The deposit occurs in the NNE‐striking faults within the Mesozoic granite. The deposit consists of four major veins with a general NNE‐strike. Based on crosscutting relationships and mineral parageneses, the veins appear to have been formed during the same mineralization epochs, and are further divided into three stages: (1) massive barren quartz veins; (2) quartz‐sulfides veins; (3) late, pure quartz or calcite veinlets. Most gold mineralization is associated with the second stage. The early stage is characterized by quartz, and small amounts of ore minerals (pyrite), the second stage is characterized by large amounts of ore minerals. Fluid inclusions in vein quartz contain C‐H‐O fluids of variable compositions. Three main types of fluid inclusions are recognized at room temperature: type I, two‐phase, aqueous vapor and an aqueous liquid phase (L+V); type II, aqueous‐carbonic inclusions, a CC2‐liquid with/without vapor and aqueous liquid (LCO2+VCC2+Laq.); type III, mono‐phase aqueous liquid (Laq.). Data from fluid inclusion distribution, microthermometry, and gas analysis indicate that fluids associated with Au mineralized quartz veins (stage 2) have moderate salinity ranging from 1.91 to 16.43 wt% NaCl equivalent (modeled salinity around 8–10 wt% NaCl equiv.). These veins formatted at temperatures from 80d? to 280d?C. Fluids associated with barren quartz veins (stage 3) have a low salinity of about 1.91 to 2.57 wt% NaCl equivalent and lower temperature. There is evidence of fluid immiscibility and boiling in ore‐forming stages. Stable isotope analyses of quartz indicate that the veins were deposited by waters with δO and δD values ranging from those of magmatic water to typical meteoric water. The gold metallogenesis of Muru gold belt has no relationship with the granite, and formed during the late stage of the crust thinning of North China.  相似文献   
119.
Gavin Hilson  Frank Nyame 《Area》2006,38(2):175-185
This paper examines the debate surrounding a recent decision made by the Ghanaian government to permit gold exploration – and potentially, mining – in 'protected' forest reserves. In 2001, four mining companies were awarded mineral exploration concessions in forested regions of the country, and have since put forward applications to mine for gold. Notwithstanding the sharp divide in opinion on the issue, the continued uncertainty surrounding the implications of the proposed activities makes further research on the ground imperative in the short term. Work aiming to elicit indigenous perspectives on the projects, as well as research that facilitates dialogue between and/or among stakeholder parties, should be prioritized.  相似文献   
120.
The Pering deposit on the Ghaap Plateau, Northwestern Province, South Africa, was the largest of several Zn–Pb occurrences hosted by Neoarchean platform dolostones of the Transvaal Supergroup. With a Paleoproterozoic mineralization age, these occurrences are widely regarded as the oldest representatives of Mississippi Valley-type Pb–Zn deposits. Hosting an initial resource of 18 Mt at an average grade of 3.6 wt% Zn and 0.6 wt% Pb, the Pering deposit was mined from 1984 until its final closure at the end of November 2002. In this study, available geological and grade distribution maps were evaluated and complemented by the examination of mining-related outcrops, drill core, and a large set of ore and host rock samples. Four different styles of brecciation can be distinguished at the Pering deposit: (1) pyritic rock matrix breccia; (2) chemical wear breccia; (3) mosaic breccia; and (4) crackle breccia. Geological and mineral paragenetic observations on these different breccia types suggest that the formation of the Pering deposit commenced with an initial stage of hydrothermal karstification. Large volumes of pyritic rock matrix breccia formed by wall rock collapsing into the open space attributed to carbonate dissolution. This stage of hydrothermal karstification acted as ground preparation for the subsequent mineralization event. By the upward advance of the hydrothermal karstification process, fluid reservoirs in the previously undisturbed dolostone host rock succession were tapped, ultimately leading to fluid mixing. Hydrothermal sulphides are the most abundant where fluid mixing was most effective, i.e. along the outer and upper margins of the breccia bodies, and in stratabound zones along permeable host rock units. Chemical wear brecciation and formation of large volumes of fine-grained replacive sphalerite mineralization mark the early stage of hydrothermal Zn–Pb mineralization associated with this fluid mixing. The fine-grained stage of sulphide mineralization was succeeded by very coarse-grained open-space-infill mineralization. The latter is very uniform across the entire deposit and typically cements mosaic and crackle breccia, but also fills remaining open space within chemical wear brecciated portions of the deposit.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号