首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28119篇
  免费   5106篇
  国内免费   7361篇
测绘学   4846篇
大气科学   5248篇
地球物理   6763篇
地质学   12510篇
海洋学   4290篇
天文学   583篇
综合类   2317篇
自然地理   4029篇
  2024年   116篇
  2023年   355篇
  2022年   977篇
  2021年   1153篇
  2020年   1319篇
  2019年   1557篇
  2018年   1273篇
  2017年   1431篇
  2016年   1520篇
  2015年   1673篇
  2014年   1840篇
  2013年   2084篇
  2012年   1891篇
  2011年   1979篇
  2010年   1550篇
  2009年   1794篇
  2008年   1854篇
  2007年   1915篇
  2006年   1850篇
  2005年   1635篇
  2004年   1450篇
  2003年   1232篇
  2002年   1135篇
  2001年   955篇
  2000年   895篇
  1999年   807篇
  1998年   729篇
  1997年   640篇
  1996年   550篇
  1995年   506篇
  1994年   456篇
  1993年   399篇
  1992年   257篇
  1991年   203篇
  1990年   150篇
  1989年   105篇
  1988年   102篇
  1987年   58篇
  1986年   41篇
  1985年   41篇
  1984年   28篇
  1983年   5篇
  1982年   9篇
  1981年   9篇
  1980年   11篇
  1979年   9篇
  1978年   11篇
  1977年   5篇
  1954年   12篇
  1900年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
提出川滇地洼系“四层楼”铜矿床序列的形成与陆壳演化的成生联系,是与本区陆壳由前地槽—地槽—地台—地洼演化各阶段与之相匹配的成矿作用的产物.与此同时,并总结了本区“四层楼”铜矿床序列的成矿作用具有明显的继承性、新生性、旋回性及层控性四大特点和多因复成矿床的成矿模式.  相似文献   
72.
MARC J.P. GOUW 《Sedimentology》2008,55(5):1487-1516
Ancient fluvial successions often act as hydrocarbon reservoirs. Sub‐surface data on the alluvial architecture of fluvial successions are often incomplete and modelling is performed to reconstruct the stratigraphy. However, all alluvial architecture models suffer from the scarcity of field data to test and calibrate them. The purposes of this study were to quantify the alluvial architecture of the Holocene Rhine–Meuse delta (the Netherlands) and to determine spatio‐temporal trends in the architecture. Five north–south orientated cross‐sections, perpendicular to the general flow direction, were compiled for the fluvial‐dominated part of the delta. These sections were used to calculate the width/thickness ratios of fluvial sandbodies (SBW/SBT) and the proportions of channel‐belt deposits (CDP), clastic overbank deposits (ODP) and organic material (OP) in the succession. Furthermore, the connectedness ratio (CR) between channel belts was calculated for each cross‐section. Distinct spatial and temporal trends in the alluvial architecture were found. SBW/SBT ratios decrease by a factor of ca 4 in a downstream direction. CDP decreases from ca 0·7 (upstream) to ca 0·3 (downstream). OP increases from less than 0·05 in the upstream part of the delta to more than 0·25 in the downstream delta. ODP is approximately constant (0·4). CR is ca 0·25 upstream, which is approximately two times larger than in the downstream part of the delta. Furthermore, CDP in the downstream Rhine–Meuse delta increases after 3000 cal yr BP. These trends are attributed to variations in available accommodation space, floodplain geometry and channel‐belt size. For instance, channel belts tend to narrow in a downstream direction, which reduces SBW/SBT, CDP and CR. Tectonics cause local deviations in the general architectural trends. In addition, the positive correlation between avulsion frequency and the ratio of local to regional aggradation rate probably influenced alluvial architecture in the Rhine–Meuse delta. The Rhine–Meuse data set can be a great resource when developing more sophisticated models for alluvial architecture simulation, which eventually could lead to better characterizations of hydrocarbon reservoirs. To aid such usage of the Rhine–Meuse data set, constraints for relevant parameters are provided at the end of the paper.  相似文献   
73.
We designed a new seismic source model for Italy to be used as an input for country-wide probabilistic seismic hazard assessment (PSHA) in the frame of the compilation of a new national reference map.

We started off by reviewing existing models available for Italy and for other European countries, then discussed the main open issues in the current practice of seismogenic zoning.

The new model, termed ZS9, is largely based on data collected in the past 10 years, including historical earthquakes and instrumental seismicity, active faults and their seismogenic potential, and seismotectonic evidence from recent earthquakes. This information allowed us to propose new interpretations for poorly understood areas where the new data are in conflict with assumptions made in designing the previous and widely used model ZS4.

ZS9 is made out of 36 zones where earthquakes with Mw > = 5 are expected. It also assumes that earthquakes with Mw up to 5 may occur anywhere outside the seismogenic zones, although the associated probability is rather low. Special care was taken to ensure that each zone sampled a large enough number of earthquakes so that we could compute reliable earthquake production rates.

Although it was drawn following criteria that are standard practice in PSHA, ZS9 is also innovative in that every zone is characterised also by its mean seismogenic depth (the depth of the crustal volume that will presumably release future earthquakes) and predominant focal mechanism (their most likely rupture mechanism). These properties were determined using instrumental data, and only in a limited number of cases we resorted to geologic constraints and expert judgment to cope with lack of data or conflicting indications. These attributes allow ZS9 to be used with more accurate regionalized depth-dependent attenuation relations, and are ultimately expected to increase significantly the reliability of seismic hazard estimates.  相似文献   

74.
Magnetotelluric investigations have been carried out in the Garhwal Himalayan corridor to delineate the electrical structure of the crust along a profile extending from Indo-Gangetic Plain to Higher Himalayan region in Uttarakhand, India. The profile passing through major Himalayan thrusts: Himalayan Frontal Thrust (HFF), Main Boundary Thrust (MBT) and Main Central Thrust (MCT), is nearly perpendicular to the regional geological strike. Data processing and impedance analysis indicate that out of 44 stations MT data recorded, only 27 stations data show in general, the validity of 2D assumption. The average geoelectric strike, N70°W, was estimated for the profile using tensor decomposition. 2D smooth geoelectrical model has been presented, which provides the electrical image of the shallow and deeper crustal structure. The major features of the model are (i) a low resistivity (<50Ωm), shallow feature interpreted as sediments of Siwalik and Indo-Gangetic Plain, (ii) highly resistive (> 1000Ωm) zone below the sediments at a depth of 6 km, interpreted as the top surface of the Indian plate, (iii) a low resistivity (< 10Ωm) below the depth of 6 km near MCT zone coincides with the intense micro-seismic activity in the region. The zone is interpreted as the partial melting or fluid phase at mid crustal depth. Sensitivity test indicates that the major features of the geoelectrical model are relevant and desired by the MT data.  相似文献   
75.
MODFLOW is a groundwater modeling program. It can be compiled and remedied according to the practical applications. Because of its structure and fixed data format, MODFLOW can be integrated with Geographic Information Systems (GIS) technology for water resource management. The North China Plain (NCP), which is the politic, economic and cultural center of China, is facing with water resources shortage and water pollution. Groundwater is the main water resource for industrial, agricultural and domestic usage. It is necessary to evaluate the groundwater resources of the NCP as an entire aquifer system. With the development of computer and internet information technology it is also necessary to integrate the groundwater model with the GIS technology. Because the geological and hydrogeological data in the NCP was mainly in MAPGIS format, the powerful function of GIS of disposing of and analyzing spatial data and computer languages such as Visual C and Visual Basic were used to define the relationship between the original data and model data. After analyzing the geological and hydrogeological conditions of the NCP, the groundwater flow numerical simulation modeling was constructed with MODFLOW. On the basis of GIS, a dynamic evaluation system for groundwater resources under the internet circumstance was completed. During the process of constructing the groundwater model, a water budget was analyzed, which showed a negative budget in the NCP. The simulation period was from 1 January 2002 to 31 December 2003. During this period, the total recharge of the groundwater system was 49,374 × 10m3 and the total discharge was 56,530 × 10m3 the budget deficit was −7,156 × 10m3. In this integrated system, the original data including graphs and attribution data could be stored in the database. When the process of evaluating and predicting groundwater flow was started, these data were transformed into files that the core program of MODFLOW could read. The calculated water level and drawdown could be displayed and reviewed online.  相似文献   
76.
77.
Quick-look assessments to identify optimal CO2 EOR storage sites   总被引:1,自引:0,他引:1  
A newly developed, multistage quick-look methodology allows for the efficient screening of an unmanageably large number of reservoirs to generate a workable set of sites that closely match the requirements for optimal CO2 enhanced oil recovery (EOR) storage. The objective of the study is to quickly identify miscible CO2 EOR candidates in areas that contain thousands of reservoirs and to estimate additional oil recovery and sequestration capacities of selected top options through dimensionless modeling and reservoir characterization. Quick-look assessments indicate that the CO2 EOR resource potential along the US Gulf Coast is 4.7 billion barrels, and CO2 sequestration capacity is 2.6 billion metric tons. In the first stage, oil reservoirs are screened and ranked in terms of technical and practical feasibility for miscible CO2 EOR. The second stage provides quick estimates of CO2 EOR potential and sequestration capacities. In the third stage, a dimensionless group model is applied to a selected set of sites to improve the estimates of oil recovery and storage potential using appropriate inputs for rock and fluid properties, disregarding reservoir architecture and sweep design. The fourth stage validates and refines the results by simulating flow in a model that describes the internal architecture and fluid distribution in the reservoir. The stated approach both saves time and allows more resources to be applied to the best candidate sites.  相似文献   
78.
Geologic storage of CO2 is expected to produce plumes of large areal extent, and some leakage may occur along fractures, fault zones, or improperly plugged pre-existing wellbores. A review of physical and chemical processes accompanying leakage suggests a potential for self-enhancement. The numerical simulations presented here confirm this expectation, but reveal self-limiting features as well. It seems unlikely that CO2 leakage could trigger a high-energy run-away discharge, a so-called “pneumatic eruption,” but present understanding is insufficient to rule out this possibility. The most promising avenue for increasing understanding of CO2 leakage behavior is the study of natural analogues.  相似文献   
79.
A screening and ranking framework (SRF) has been developed to evaluate potential geologic carbon dioxide (CO2) storage sites on the basis of health, safety, and environmental (HSE) risk arising from CO2 leakage. The approach is based on the assumption that CO2 leakage risk is dependent on three basic characteristics of a geologic CO2 storage site: (1) the potential for primary containment by the target formation; (2) the potential for secondary containment if the primary formation leaks; and (3) the potential for attenuation and dispersion of leaking CO2 if the primary formation leaks and secondary containment fails. The framework is implemented in a spreadsheet in which users enter numerical scores representing expert opinions or published information along with estimates of uncertainty. Applications to three sites in California demonstrate the approach. Refinements and extensions are possible through the use of more detailed data or model results in place of property proxies.  相似文献   
80.
This paper reports a preliminary investigation of CO2 sequestration and seal integrity at Teapot Dome oil field, Wyoming, USA, with the objective of predicting the potential risk of CO2 leakage along reservoir-bounding faults. CO2 injection into reservoirs creates anomalously high pore pressure at the top of the reservoir that could potentially hydraulically fracture the caprock or trigger slip on reservoir-bounding faults. The Tensleep Formation, a Pennsylvanian age eolian sandstone is evaluated as the target horizon for a pilot CO2 EOR-carbon storage experiment, in a three-way closure trap against a bounding fault, termed the S1 fault. A preliminary geomechanical model of the Tensleep Formation has been developed to evaluate the potential for CO2 injection inducing slip on the S1 fault and thus threatening seal integrity. Uncertainties in the stress tensor and fault geometry have been incorporated into the analysis using Monte Carlo simulation. The authors find that even the most pessimistic risk scenario would require ∼10 MPa of excess pressure to cause the S1 fault to reactivate and provide a potential leakage pathway. This would correspond to a CO2 column height of ∼1,500 m, whereas the structural closure of the Tensleep Formation in the pilot injection area does not exceed 100 m. It is therefore apparent that CO2 injection is not likely to compromise the S1 fault stability. Better constraint of the least principal stress is needed to establish a more reliable estimate of the maximum reservoir pressure required to hydrofracture the caprock.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号