首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1121篇
  免费   186篇
  国内免费   223篇
测绘学   145篇
大气科学   198篇
地球物理   312篇
地质学   333篇
海洋学   240篇
天文学   43篇
综合类   55篇
自然地理   204篇
  2024年   8篇
  2023年   23篇
  2022年   34篇
  2021年   42篇
  2020年   48篇
  2019年   43篇
  2018年   36篇
  2017年   37篇
  2016年   47篇
  2015年   55篇
  2014年   63篇
  2013年   109篇
  2012年   73篇
  2011年   62篇
  2010年   61篇
  2009年   47篇
  2008年   65篇
  2007年   75篇
  2006年   67篇
  2005年   79篇
  2004年   64篇
  2003年   47篇
  2002年   34篇
  2001年   37篇
  2000年   34篇
  1999年   31篇
  1998年   32篇
  1997年   23篇
  1996年   30篇
  1995年   11篇
  1994年   26篇
  1993年   19篇
  1992年   16篇
  1991年   9篇
  1990年   7篇
  1989年   10篇
  1988年   11篇
  1987年   8篇
  1986年   1篇
  1984年   1篇
  1982年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
排序方式: 共有1530条查询结果,搜索用时 15 毫秒
31.
GPS动态实时差分定位模式具有精度高,性能可靠,使用方便等优点,它在许多领域都展示了广阔的应用前景,本文将以DGPS在航道的水下地形与不深测量方面的具体应用为例予以简单介绍,代与同行交流。  相似文献   
32.
利用西太平洋地区的雅浦-马里亚纳海沟附近海域的多波束水深数据,获得了9.8°N—13.2°N、132.2°E—145°E矩形区域内的高精度水深地形图。通过对精细地貌进行研究发现,马里亚纳海沟南部的洋坡上发育有大范围的地垒、地堑型地貌,雅浦海沟北部存在明显的分段性特征,菲律宾海盆和帕里西维拉海盆内存在不同展布方向的大规模脊-槽地貌。研究结果表明此处复杂的地形地貌特征主要受板块运动的控制。最后结合已有研究成果,对该区域的地形地貌进行了分类。  相似文献   
33.
The current discussion of whether marine geodesy is something entirely new or part of oceanography or geodesy can be clarified by re‐examining our notions about the basic business of geodesy. This paper contends that the same basic geodetic services, which were needed for millenia to chart and control new territory, are being adapted now to the marine environment to suit modern accuracy standards. In a brief historical review it is shown that conceptually, the oceanic regions were always an integral part of geodetic concern. The oceans were certainly part of the world for the ancient map makers and for Pythagoras’ spherical earth model. Notions connected with the marine geoid were implied in ancient speculations. Distances and directions at sea, even depths, were determined to meet the requirements of the times. With the modern sophistication in geodetic theory and measuring techniques, these ideas became more refined and demanding in turn, but they were there all the time. For obvious reasons, land geodesy developed faster; marine geodesy will catch up now, because only now there is the technical capability and also an urgent economic motivation.  相似文献   
34.
起伏地表条件下的声波散射数值模拟的积分方程法   总被引:2,自引:1,他引:2  
从散射理论的角度来看,起伏地表可以看作是一种特殊的扰动介质,因此应用散射积分方程求解起伏地表条件下的散射场在理论上是可行的。从三维频率域声波方程出发,由格林函数定理,得出起伏地表条件下的散射积分方程。散射积分方程为关于起伏地表的面积分和与速度扰动体有关的体积分之和,同时给出了格林函数在奇异点的积分方法。由于数值离散求解积分方程存在着计算时间太长和存储内存不足的问题,采用电磁散射积分方程的拟解析近似的方法。在假设反射函数为缓变函数的基础上,最终得到其近似表达式,因此散射场的数值求解不必再借助于代数方程组,只要进行数值积分即可。这种方法避开了传统数值计算方法存在的问题,为地震散射波场快速正演模拟打下了基础。理论分析表明,这种方法适用于小扰动的问题。当扰动较大时,拟解析近似会产生较大的误差。  相似文献   
35.
起伏地表下的直接叠前时间偏移   总被引:4,自引:9,他引:4       下载免费PDF全文
提出了一种新的叠前时间偏移方法和流程,可不必应用野外静校正,直接对起伏地表采集的地震数据进行叠前时间偏移.本文采用输入道成像方式,通过基于稳相点原理给出单道数据的走时和振幅计算方法,发展了一个表驱动的叠前时间偏移算法.偏移方法可依据同相轴是否被拉平确定叠加速度和修正近地表速度模型,也可依据拟成像的构造倾角,自适应地确定偏移孔径;后者既减少了偏移计算量,也压制了偏移噪声.文中用二维起伏地表的断陷盆地模型的理论数据验证了所发展方法的成像效果.  相似文献   
36.
Research in landscape evolution over millions to tens of millions of years slowed considerably in the mid‐20th century, when Davisian and other approaches to geomorphology were replaced by functional, morphometric and ultimately process‐based approaches. Hack's scheme of dynamic equilibrium in landscape evolution was perhaps the major theoretical contribution to long‐term landscape evolution between the 1950s and about 1990, but it essentially ‘looked back’ to Davis for its springboard to a viewpoint contrary to that of Davis, as did less widely known schemes, such as Crickmay's hypothesis of unequal activity. Since about 1990, the field of long‐term landscape evolution has blossomed again, stimulated by the plate tectonics revolution and its re‐forging of the link between tectonics and topography, and by the development of numerical models that explore the links between tectonic processes and surface processes. This numerical modelling of landscape evolution has been built around formulation of bedrock river processes and slope processes, and has mostly focused on high‐elevation passive continental margins and convergent zones; these models now routinely include flexural and denudational isostasy. Major breakthroughs in analytical and geochronological techniques have been of profound relevance to all of the above. Low‐temperature thermochronology, and in particular apatite fission track analysis and (U–Th)/He analysis in apatite, have enabled rates of rock uplift and denudational exhumation from relatively shallow crustal depths (up to about 4 km) to be determined directly from, in effect, rock hand specimens. In a few situations, (U–Th)/He analysis has been used to determine the antiquity of major, long‐wavelength topography. Cosmogenic isotope analysis has enabled the determination of the ‘ages’ of bedrock and sedimentary surfaces, and/or the rates of denudation of these surfaces. These latter advances represent in some ways a ‘holy grail’ in geomorphology in that they enable determination of ‘dates and rates’ of geomorphological processes directly from rock surfaces. The increasing availability of analytical techniques such as cosmogenic isotope analysis should mean that much larger data sets become possible and lead to more sophisticated analyses, such as probability density functions (PDFs) of cosmogenic ages and even of cosmogenic isotope concentrations (CICs). PDFs of isotope concentrations must be a function of catchment area geomorphology (including tectonics) and it is at least theoretically possible to infer aspects of source area geomorphology and geomorphological processes from PDFs of CICs in sediments (‘detrital CICs’). Thus it may be possible to use PDFs of detrital CICs in basin sediments as a tool to infer aspects of the sediments' source area geomorphology and tectonics, complementing the standard sedimentological textural and compositional approaches to such issues. One of the most stimulating of recent conceptual advances has followed the considerations of the relationships between tectonics, climate and surface processes and especially the recognition of the importance of denudational isostasy in driving rock uplift (i.e. in driving tectonics and crustal processes). Attention has been focused very directly on surface processes and on the ways in which they may ‘drive’ rock uplift and thus even influence sub‐surface crustal conditions, such as pressure and temperature. Consequently, the broader geoscience communities are looking to geomorphologists to provide more detailed information on rates and processes of bedrock channel incision, as well as on catchment responses to such bedrock channel processes. More sophisticated numerical models of processes in bedrock channels and on their flanking hillslopes are required. In current numerical models of long‐term evolution of hillslopes and interfluves, for example, the simple dependency on slope of both the fluvial and hillslope components of these models means that a Davisian‐type of landscape evolution characterized by slope lowering is inevitably ‘confirmed’ by the models. In numerical modelling, the next advances will require better parameterized algorithms for hillslope processes, and more sophisticated formulations of bedrock channel incision processes, incorporating, for example, the effects of sediment shielding of the bed. Such increasing sophistication must be matched by careful assessment and testing of model outputs using pre‐established criteria and tests. Confirmation by these more sophisticated Davisian‐type numerical models of slope lowering under conditions of tectonic stability (no active rock uplift), and of constant slope angle and steady‐state landscape under conditions of ongoing rock uplift, will indicate that the Davis and Hack models are not mutually exclusive. A Hack‐type model (or a variant of it, incorporating slope adjustment to rock strength rather than to regolith strength) will apply to active settings where there is sufficient stream power and/or sediment flux for channels to incise at the rate of rock uplift. Post‐orogenic settings of decreased (or zero) active rock uplift would be characterized by a Davisian scheme of declining slope angles and non‐steady‐state (or transient) landscapes. Such post‐orogenic landscapes deserve much more attention than they have received of late, not least because the intriguing questions they pose about the preservation of ancient landscapes were hinted at in passing in the 1960s and have recently re‐surfaced. As we begin to ask again some of the grand questions that lay at the heart of geomorphology in its earliest days, large‐scale geomorphology is on the threshold of another ‘golden’ era to match that of the first half of the 20th century, when cyclical approaches underpinned virtually all geomorphological work. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
37.
地形畸变对偶极-偶极电阻率测深拟断面图的影响   总被引:1,自引:3,他引:1       下载免费PDF全文
偶极-偶极剖面方法是一种非常流行的物探方法,但就地形对该方法的实质性影响及修正研究得比较少.我们就几种典型的地形畸变情况进行了正演计算,并绘制了拟断面图.通过对这些图形分析,可以看到在地形畸变处的拟断面图不能反映地下地质体的情况,且有效拟断面图是不连续的,需要分段处理,分级解释.  相似文献   
38.
陈树文  刘洪 《地球物理学进展》2002,17(3):365-369,T001
提出改进的波动方程基准面方法,用于解决地表一致性问题,通过基准面的下移,可以使深部的信号增强,变多值走时为单值走时,从根本上消除了上覆层速度横向不均匀的影响,从而可以更好地解决复杂地质体成像问题。作者从原理上对上述观点给予了证明,而且给出利用波动方程基准面有限差分法做的实例--大庆油田“陆相断隐模型”。  相似文献   
39.
The aeolian sand transport model SAFE and the air flow model HILL were applied to evaluate cross‐shore changes at two nourished beaches and adjacent dunes and to identify the response of aeolian sand transport and morphology to several nourishment design parameters and fill characteristics. The main input of the model consisted of data on the sediment, tide and meteorological conditions, and of half‐yearly measured characteristics of topography, vegetation and sand fences. The cross‐shore profiles generated by SAFE–HILL were compared to measured cross‐shore profiles. The patterns of erosion and deposition, and the morphological development corresponded. In general, the rates of aeolian sand transport were overestimated. The impact of parameters that are related to beach nourishment (namely grain size, adaptation length and beach topography) on profile development was evaluated. Grain size affected the aeolian sand transport rate to the foredunes, and therefore the morphology. Adaptation length, which is a measure of the distance over which sediment transport adapts to a new equilibrium condition, affected the topography of the beach in particular. The topography of a beach nourishment had limited impact on both aeolian sand transport rate and morphology. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
40.
Mountain‐range topography is determined by the complex interplay between tectonics and climate. However, often it is not clear to what extent climate forces topographic evolution and how past climatic episodes are reflected in present‐day relief. The Andes are a tectonically active mountain belt encompassing various climatic zones with pronounced differences in rainfall, erosion, and glacier extent under similar plate‐boundary conditions. In the central to south‐western Andes, climatic zones range from hyperarid desert with mean annual rainfall of 5 mm/a (22·5°S) to year‐round humidity with 2500 mm/a (40°S). The Andes thus provide a unique setting for investigating the relationship between tectonics, climate, and topography. We present an analysis of 120 catchments along the western Andean watersheds between 15·5° and 41·5°S, which is based on SRTMV3‐90m data and new medium‐resolution rainfall, tropical rainfall measurement mission (TRMM) dataset. For each basin, we extracted geometry, relief, and climate parameters to test whether Andean topography shows a climatic imprint and to analyze how climate influences relief. Our data document that elevation and relief decrease with increasing rainfall and descending snowline elevation. Furthermore, we show that local relief reaches high values of 750 m in a zone between 28°S to 35°S. During Pleistocene glacial stages this region was affected by the northward shifting southern hemisphere Westerlies, which provided moisture for valley‐glacier formation and extended glacial coverage as well as glacial erosion. In contrast, the southern regions between 35°S to 40°S receive higher rainfall and have a lower local relief of 200 m, probably related to an increased drainage density. We distinguish two different, climatically‐controlled mechanisms shaping topography: (1) fluvial erosion by prolonged channel‐hillslope coupling, which smoothes relief, and (2) erosion by valley glaciers that generates relief. Finally, Our results suggests that the catchment‐scale relief of the Andes between 28°S to 35°S is characterized by a pronounced transient component reflecting past climatic conditions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号