全文获取类型
收费全文 | 2022篇 |
免费 | 129篇 |
国内免费 | 121篇 |
专业分类
测绘学 | 247篇 |
大气科学 | 27篇 |
地球物理 | 262篇 |
地质学 | 392篇 |
海洋学 | 86篇 |
天文学 | 4篇 |
综合类 | 171篇 |
自然地理 | 1083篇 |
出版年
2024年 | 9篇 |
2023年 | 21篇 |
2022年 | 53篇 |
2021年 | 97篇 |
2020年 | 85篇 |
2019年 | 80篇 |
2018年 | 64篇 |
2017年 | 99篇 |
2016年 | 79篇 |
2015年 | 78篇 |
2014年 | 97篇 |
2013年 | 154篇 |
2012年 | 124篇 |
2011年 | 126篇 |
2010年 | 69篇 |
2009年 | 117篇 |
2008年 | 112篇 |
2007年 | 109篇 |
2006年 | 116篇 |
2005年 | 114篇 |
2004年 | 73篇 |
2003年 | 87篇 |
2002年 | 73篇 |
2001年 | 53篇 |
2000年 | 38篇 |
1999年 | 34篇 |
1998年 | 23篇 |
1997年 | 20篇 |
1996年 | 9篇 |
1995年 | 13篇 |
1994年 | 7篇 |
1993年 | 7篇 |
1992年 | 5篇 |
1991年 | 1篇 |
1990年 | 3篇 |
1989年 | 1篇 |
1988年 | 4篇 |
1987年 | 4篇 |
1986年 | 4篇 |
1985年 | 3篇 |
1984年 | 2篇 |
1983年 | 2篇 |
1982年 | 2篇 |
1976年 | 1篇 |
排序方式: 共有2272条查询结果,搜索用时 15 毫秒
31.
地域分异是地球表层大小不等、内部具有一定相似性地段之间的相互分化以及由此产生的差异。为了研究不同区位土壤侵蚀问题,从土壤生态景观及系统论出发,运用地质学、地理学、景观生态学、环境学的理论和研究方法,研究湖北省土壤侵蚀景观空间格局及其驱动因子,使土壤侵蚀问题研究提高到一个新的水平。湖北省土壤侵蚀景观具有南北分带、东西分区,为一不对称的断块一环组合,土壤流呈现向长江、江汉盆地中心轴带辐聚、单流向特点。景观空间异质性形成的首要驱动因子是大地构造背景,以房县一襄樊一广济断裂带为界,南北两侧地壳物质组成和构造发展史存在较明显的差异,现代气候带、降雨量、温热程度及土地利用等差异,造成了湖北省区域土壤地理、土壤生态的分异,形成湖北省土壤生态带、区具有南北分带,东西分区的宏观格局;其次大兴安岭一武陵山深部构造陡变带两侧新构造运动强度差异、大别造山带构造强烈隆升,导致土壤侵蚀强度的西强东弱、南北强中间弱的态势;成土母岩差异性决定了土壤可蚀性的多变;空间上“土壤侵蚀内城区”分布在湖北省的周边地区,经济贫困、管理落后,这一地区的经济水平与水土流失间形成“自反馈作用”,这一现象在我国水土保持、生态建设工作中应该引起重视。 相似文献
32.
33.
There are various factors governing the spatial and temporal variability of soil water storage including soil properties, topography and vegetation. Some factors act locally, whereas others act nonlocally, which means that a factor measured at one location has effect on soil water storage at another location. The objective of this study was to examine the effects of local and nonlocal controls of soil water storage in a hummocky landscape using cyclical correlation analysis. Soil water storage, soil properties and terrain indices were measured along a 128‐point transect of 576 m long from the semiarid, hummocky, prairie pothole region of North America. There are large coefficients of determination (r2) between soil water storage and sand content (r2 = 0.32–0.53), organic carbon content (r2 = 0.22–0.56), depth to carbonate layer (r2 = 0.13–0.63), wetness index (r2 = 0.25–0.45) and other variables at the measurement scale at different times, indicating strong local effects from these variables. The correlation coefficients were also calculated by physically shifting the spatial series of soil water storage with respect to that of controlling factors. The shifting improves the correlation between the spatial series, and the length of shifting indicated the difference in the response of soil water to its controlling factors. For example, the value of r2 increased more than eightfold (r2 = 0.47–0.64) after shifting the spatial series of soil water storage by 54 m, almost equal to the average length of existing slope, compared with the very weak correlation (r2 = 0.02–0.08) at the measurement scale. This indicated the nonlocal effect from the relative elevation. The identification of nonlocal effects from factors improves the prediction of soil water storage. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
34.
抽象的文字概念和直观的视觉呈现,都佐证着玉雕山子与中国山水画之间存在某种必然的关系,这种关系并不复杂,但很微妙.玉雕山子与中国山水画的区别不仅只是图像载体不同所带来的差异,二者所涵盖的内容范围有着根本的区别.本文试图从中国山水画的角度出发,探讨二者在表现范围上的本质区别,阐明中国山水画对玉雕山子在表现内容、透视方法、空间布局、技法风格、审美追求、理论构建、艺术品评等多个方面的发展所起到的借鉴意义.对于当代玉雕山子和当代中国山水画二者之间出现疏离现象的原因,本文也进行了简单的分析. 相似文献
35.
36.
Mountain‐range topography is determined by the complex interplay between tectonics and climate. However, often it is not clear to what extent climate forces topographic evolution and how past climatic episodes are reflected in present‐day relief. The Andes are a tectonically active mountain belt encompassing various climatic zones with pronounced differences in rainfall, erosion, and glacier extent under similar plate‐boundary conditions. In the central to south‐western Andes, climatic zones range from hyperarid desert with mean annual rainfall of 5 mm/a (22·5°S) to year‐round humidity with 2500 mm/a (40°S). The Andes thus provide a unique setting for investigating the relationship between tectonics, climate, and topography. We present an analysis of 120 catchments along the western Andean watersheds between 15·5° and 41·5°S, which is based on SRTMV3‐90m data and new medium‐resolution rainfall, tropical rainfall measurement mission (TRMM) dataset. For each basin, we extracted geometry, relief, and climate parameters to test whether Andean topography shows a climatic imprint and to analyze how climate influences relief. Our data document that elevation and relief decrease with increasing rainfall and descending snowline elevation. Furthermore, we show that local relief reaches high values of 750 m in a zone between 28°S to 35°S. During Pleistocene glacial stages this region was affected by the northward shifting southern hemisphere Westerlies, which provided moisture for valley‐glacier formation and extended glacial coverage as well as glacial erosion. In contrast, the southern regions between 35°S to 40°S receive higher rainfall and have a lower local relief of 200 m, probably related to an increased drainage density. We distinguish two different, climatically‐controlled mechanisms shaping topography: (1) fluvial erosion by prolonged channel‐hillslope coupling, which smoothes relief, and (2) erosion by valley glaciers that generates relief. Finally, Our results suggests that the catchment‐scale relief of the Andes between 28°S to 35°S is characterized by a pronounced transient component reflecting past climatic conditions. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
37.
38.
Sudhir Kumar Singh Szilárd Szabó George P. Petropoulos Manika Gupta Tanvir Islam 《国际地球制图》2017,32(2):113-127
Analysis of Earth observation (EO) data, often combined with geographical information systems (GIS), allows monitoring of land cover dynamics over different ecosystems, including protected or conservation sites. The aim of this study is to use contemporary technologies such as EO and GIS in synergy with fragmentation analysis, to quantify the changes in the landscape of the Rajaji National Park (RNP) during the period of 19 years (1990–2009). Several statistics such as principal component analysis (PCA) and spatial metrics are used to understand the results. PCA analysis has produced two principal components (PC) and explained 84.1% of the total variance, first component (PC1) accounted for the 57.8% of the total variance while the second component (PC2) has accounted for the 26.3% of the total variance calculated from the core area metrics, distance metrics and shape metrics. Our results suggested that notable changes happened in the RNP landscape, evidencing the requirement of taking appropriate measures to conserve this natural ecosystem. 相似文献
39.
40.