首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6806篇
  免费   1674篇
  国内免费   1560篇
测绘学   158篇
大气科学   214篇
地球物理   2162篇
地质学   5300篇
海洋学   948篇
天文学   12篇
综合类   465篇
自然地理   781篇
  2024年   24篇
  2023年   75篇
  2022年   171篇
  2021年   246篇
  2020年   271篇
  2019年   288篇
  2018年   271篇
  2017年   296篇
  2016年   330篇
  2015年   314篇
  2014年   400篇
  2013年   427篇
  2012年   397篇
  2011年   408篇
  2010年   360篇
  2009年   451篇
  2008年   473篇
  2007年   478篇
  2006年   437篇
  2005年   397篇
  2004年   407篇
  2003年   351篇
  2002年   327篇
  2001年   272篇
  2000年   278篇
  1999年   254篇
  1998年   239篇
  1997年   212篇
  1996年   203篇
  1995年   200篇
  1994年   160篇
  1993年   146篇
  1992年   107篇
  1991年   86篇
  1990年   72篇
  1989年   73篇
  1988年   44篇
  1987年   35篇
  1986年   19篇
  1985年   9篇
  1984年   11篇
  1983年   5篇
  1980年   3篇
  1979年   5篇
  1978年   1篇
  1954年   7篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
271.
贾国东  黄国伦 《地学前缘》2005,12(Z1):29-35
沿海地区海底地下水排放在北美和欧洲等发达地区受到了越来越多的重视,被认为是一个重要的海岸带陆海相互作用过程。但这一过程在我国尚未引起足够认识,有关研究极少见。海底地下水排放的研究历史不长,只是近十多年才有了快速的发展,有了越来越多的定量研究成果。其研究方法主要有水文计算法、现场实测法和地球化学示踪法,各种方法之间的对比实验是目前的热点问题。沿海地下水排放具有重要的环境意义,它可以是陆地营养物质和污染物质的一个重要排放通道,可以对海岸带环境产生一定影响。我国沿海地区应该加强有关的研究工作,为海岸带环境管理作出贡献。  相似文献   
272.
The New Madrid seismic zone (NMSZ) is an intraplate right-lateral strike-slip and thrust fault system contained mostly within the Mississippi Alluvial Valley. The most recent earthquake sequence in the zone occurred in 1811–1812 and had estimated moment magnitudes of 7–8 (e.g., [Johnston, A.C., 1996. Seismic moment assessment of stable continental earthquakes, Part 3: 1811–1812 New Madrid, 1886 Charleston, and 1755 Lisbon. Geophysical Journal International 126, 314–344; Johnston, A.C., Schweig III, E.S, 1996. The enigma of the New Madrid earthquakes of 1811–1812. Annual Reviews of Earth and Planetary Sciences 24, 339–384; Hough, S.E., Armbruster, J.G., Seeber, L., Hough, J.F., 2000. On the modified Mercalli intensities and magnitudes of the New Madrid earthquakes. Journal of Geophysical Research 105 (B10), 23,839–23,864; Tuttle, M.P., 2001. The use of liquefaction features in paleoseismology: Lessons learned in the New Madrid seismic zone, central United States. Journal of Seismology 5, 361–380]). Four earlier prehistoric earthquakes or earthquake sequences have been dated A.D. 1450 ± 150, 900 ± 100, 300 ± 200, and 2350 B.C. ± 200 years using paleoliquefaction features, particularly those associated with native American artifacts, and in some cases surface deformation ([Craven, J. A. 1995. Paleoseismology study in the New Madrid seismic zone using geological and archeological features to constrain ages of liquefaction deposits. M.S thesis, University of Memphis, Memphis, TN, U.S.A.; Tuttle, M.P., Lafferty III, R.H., Guccione, M.J., Schweig III, E.S., Lopinot, N., Cande, R., Dyer-Williams, K., Haynes, M., 1996. Use of archaeology to date liquefaction features and seismic events in the New Madrid seismic zone, central United States. Geoarchaeology 11, 451–480; Guccione, M.J., Mueller, K., Champion, J., Shepherd, S., Odhiambo, B., 2002b. Stream response to repeated co-seismic folding, Tiptonville dome, western Tennessee. Geomorphology 43(2002), 313–349; Tuttle, M.P., Schweig, E.S., Sims, J.D., Lafferty, R.H., Wolf, L.W., Haynes, M.L., 2002. The earthquake potential of the New Madrid seismic zone, Bulletin of the Seismological Society of America, v 92, n. 6, p. 2080–2089; Tuttle, M.P., Schweig III, E.S., Campbell, J., Thomas, P.M., Sims, J.D., Lafferty III, R.H., 2005. Evidence for New Madrid earthquakes in A.D. 300 and 2350 B.C. Seismological Research Letters 76, 489–501]). The two most recent prehistoric and the 2350 B.C. events were probably also earthquake sequences with approximately the same magnitude as the historic sequence.Surface deformation (faulting and folding) in an alluvial setting provides many examples of stream response to gradient changes that can also be used to date past earthquake events. Stream responses include changes in channel morphology, deviations in the channel path from the regional gradient, changes in the direction of flow, anomalous longitudinal profiles, and aggradation or incision of the channel ([Merritts, D., Hesterberg, T, 1994. Stream networks and long-term surface uplift in the New Madrid seismic zone. Science 265, 1081–1084.; Guccione, M.J., Mueller, K., Champion, J., Shepherd, S., Odhiambo, B., 2002b. Stream response to repeated co-seismic folding, Tiptonville dome, western Tennessee. Geomorphology 43 (2002), 313–349]). Uplift or depression of the floodplain affects the frequency of flooding and thus the thickness and style of vertical accretion or drowning of a meander scar to form a lake. Vegetation may experience trauma, mortality, and in some cases growth enhancement due to ground failure during the earthquake and hydrologic changes after the earthquake ([VanArdale, R.B., Stahle, D.W., Cleaveland, M.K., Guccione, M.J., 1998. Earthquake signals in tree-ring data from the New Madrid seismic zone and implications for paleoseismicity. Geology 26, 515–518]). Identification and dating these physical and biologic responses allows source areas to be identified and seismic events to be dated.Seven fault segments are recognized by microseismicity and geomorphology. Surface faulting has been recognized at three of these segments, Reelfoot fault, New Madrid North fault, and Bootheel fault. The Reelfoot fault is a compressive stepover along the strike-slip fault and has up to 11 m of surface relief ([Carlson, S.D., 2000. Formation and geomorphic history of Reelfoot Lake: insight into the New Madrid seismic zone. M.S. Thesis, University of Arkansas, Fayetteville, Arkansas, U.S.A]) deforming abandoned and active Mississippi River channels ([Guccione, M.J., Mueller, K., Champion, J., Shepherd, S., Odhiambo, B., 2002b. Stream response to repeated co-seismic folding, Tiptonville dome, western Tennessee. Geomorphology 43 (2002), 313–349]). The New Madrid North fault apparently has only strike-slip motion and is recognized by modern microseismicity, geomorphic anomalies, and sand cataclasis ([Baldwin, J.N., Barron A.D., Kelson, K.I., Harris, J.B., Cashman, S., 2002. Preliminary paleoseismic and geophysical investigation of the North Farrenburg lineament: primary tectonic deformation associated with the New Madrid North Fault?. Seismological Research Letters 73, 393–413]). The Bootheel fault, which is not identified by the modern microseismicity, is associated with extensive liquefaction and offset channels ([Guccione, M.J., Marple, R., Autin, W.J., 2005, Evidence for Holocene displacements on the Bootheel fault (lineament) in southeastern Missouri: Seismotectonic implications for the New Madrid region. Geological Society of America Bulletin 117, 319–333]). The fault has dominantly strike-slip motion but also has a vertical component of slip. Other recognized surface deformation includes relatively low-relief folding at Big Lake/Manila high ([Guccione, M.J., VanArdale, R.B., Hehr, L.H., 2000. Origin and age of the Manila high and associated Big Lake “Sunklands”, New Madrid seismic zone, northeastern Arkansas. Geological Society of America Bulletin 112, 579–590]) and Lake St. Francis/Marked Tree high ([Guccione, M.J., VanArsdale, R.B., 1995. Origin and age of the St. Francis Sunklands using drainage patterns and sedimentology. Final report submitted to the U. S. Geological Survey, Award Number 1434-93-G-2354, Washington D.C.]), both along the subsurface Blytheville arch. Deformation at each of the fault segments does not occur during each earthquake event, indicating that earthquake sources have varied throughout the Holocene.  相似文献   
273.
The studied serpentinites occur as isolated masses, imbricate slices of variable thicknesses and as small blocks or lenses incorporated in the sedimentary matrix of the mélange. They are thrusted over the associated island arc calc-alkaline metavolcanics and replaced by talc-carbonates along shear zones. Lack of thermal effect of the serpentinites upon the enveloping country rocks, as well as their association with thrust faults indicates their tectonic emplacement as solid bodies. Petrographically, they are composed essentially of antigorite, chrysotile and lizardite with subordinate amounts of carbonates, chromite, magnetite, magnesite, talc, tremolite and chlorite. Chrysotile occurs as cross-fiber veinlets traversing the antigorite matrix, which indicate a late crystallization under static conditions. The predominance of antigorite over other serpentine minerals indicates that the serpentinites have undergone prograde metamorphism or the parent ultramafic rocks were serpentinized under higher pressure. The parent rocks of the studied serpentinites are mainly harzburgite and less commonly dunite and wehrlite due to the prevalence of mesh and bastite textures. The serpentinites have suffered regional metamorphism up to the greenschist facies, which occurred during the collisional stage or back-arc basin closure, followed by thrusting over a continental margin. The microprobe analyses of the serpentine minerals show wide variation in SiO2, MgO, Al2O3, FeO and Cr2O3 due to different generations of serpentinization. The clinopyroxene relicts, from the partly serpentinized peridotite, are augite and similar to clinopyroxene in mantle-derived peridotites. The chromitite lenses associated with the serpentinites show common textures and structures typical of magmatic crystallization and podiform chromitites. The present data suggest that the serpentinites and associated chromitite lenses represent an ophiolitic mantle sequence from a supra-subduction zone, which were thrust over the continental margins during the collisional stage of back-arc basin.  相似文献   
274.
The influence of cavern’s span on surrounding rock classification is getting more and more recognition along with large span underground working’s increasingly coming forth. The authors analyse the timbering expense of cavern in jointed rock mass, the radius of plastic loosened zone and the size effect of macroscopical mechanical parameters of rock mass. Based on the complexion of depressing of surrounding rock’s stability due to increment of cavern’s span, the authors pinpoint attaching importance to the influence of cavern’s span on surrounding rock classification; and suggest reckoning the factor of cavern’s span in surrounding rock classification scientifically by studying the size effect of rock mass’s physico-mechanical parameters.  相似文献   
275.
This paper presents an alternative Boussinesq equation considering hysteresis effect via a third‐order derivative term. By introducing an improved moisture–pressure retention function, this equation describes, with reasonable precision, groundwater propagation in coastal aquifers subject to Dirichlet boundary condition of different oscillation frequencies. Test results confirmed that it is necessary to consider horizontal and vertical flows in unsaturated zone, because of their variable influences on hysteresis. Hysteresis in unsaturated zone can affect the water table wave number of groundwater wave motion, such as wave damping rate and phase lag. Oscillations with different periods exert different hysteresis effect on wave propagation. Truncation/shrinkage of unsaturated zones also affects the strength of hysteresis. These impacts can be reflected in the alternative Boussinesq equation by adjusting the parameter representing the variation rate of moisture associated with pressure change, as opposed to traditional computationally expensive hysteresis algorithms. The present Boussinesq equation is simple to use and can provide feasible basis for future coupling of groundwater and surface water models. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
276.
Water percolation and flow processes in subsurface geologic media play an important role in determining the water source for plants and the transport of contaminants or nutrients, which is essential for water resource management and the development of measures for pollution mitigation. During June 2013, the dynamics of the rainwater, soil water, subsurface flows and groundwater in a shallow Entisol on sloping farmland were monitored using a hydrometric and isotopic approach. The results showed that effective mixing of rainwater and soil water occurred in hours. The rebound phenomenon of δD profiles in soils showed that most isotope‐depleted rainwater largely bypassed the soil matrix when the water saturation in the soil was high. Preferential‐flow, which was the dominant water movement pattern in the vadose zone, occurred through the whole soil profile, and infrequent piston‐flow was mainly found at 20–40 cm in depth. The interflow in the soil layer, composed of 75.2% rainwater, was only generated when the soil profile had been saturated. Underflow in the fractured mudrock was the dominant flow type in this hillslope, and outflow was dominated by base flow (groundwater flow) with a mean contribution of 76.7%. The generation mechanism of underflow was groundwater ridging, which was superimposed upon preferential‐flow composed mainly of rainwater. The quick mixing process of rainwater and soil water and the rapid movement of the mixture through preferential channels in the study soil, which shows a typical bimodal pore size distribution, can explain the prompt release of pre‐event water in subsurface flow. Water sources of subsurface flows at peak discharge could be affected by the antecedent soil water content, rain characteristics and antecedent groundwater levels. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
277.
Geothermobarometric and geochronological work indicates a complete Eocene/early Oligocene blueschist/greenschist facies metamorphic cycle of the Cycladic Blueschist Unit on Naxos Island in the Aegean Sea region. Using the average pressure–temperature (P–T) method of thermocalc coupled with detailed textural work, we separate an early blueschist facies event at 576 ± 16 to 619 ± 32°C and 15.5 ± 0.5 to 16.3 ± 0.9 kbar from a subsequent greenschist facies overprint at 384 ± 30°C and 3.8 ± 1.1 kbar. Multi‐mineral Rb–Sr isochron dating yields crystallization ages for near peak‐pressure blueschist facies assemblages between 40.5 ± 1.0 and 38.3 ± 0.5 Ma. The greenschist facies overprint commonly did not result in complete resetting of age signatures. Maximum ages for the end of greenschist facies reworking, obtained from disequilibrium patterns, cluster near c. 32 Ma, with one sample showing rejuvenation at c. 27 Ma. We conclude that the high‐P rocks from south Naxos were exhumed to upper mid‐crustal levels in the late Eocene and early Oligocene at rates of 7.4 ± 4.6 km/Ma, completing a full blueschist‐/greenschist facies metamorphic cycle soon after subduction within c. 8 Ma. The greenschist facies overprint of the blueschist facies rocks from south Naxos resulted from rapid exhumation and associated deformation/fluid‐controlled metamorphic re‐equilibration, and is unrelated to the strong high‐T metamorphism associated with the Miocene formation of the Naxos migmatite dome. It follows that the Miocene thermal overprint had no impact on rock textures or Sr isotopic signatures, and that the rocks of south Naxos underwent three metamorphic events, one more than hitherto envisaged.  相似文献   
278.
We propose a numerical method that couples a cohesive zone model (CZM) and a finite element‐based continuum damage mechanics (CDM) model. The CZM represents a mode II macro‐fracture, and CDM finite elements (FE) represent the damage zone of the CZM. The coupled CZM/CDM model can capture the flow of energy that takes place between the bulk material that forms the matrix and the macroscopic fracture surfaces. The CDM model, which does not account for micro‐crack interaction, is calibrated against triaxial compression tests performed on Bakken shale, so as to reproduce the stress/strain curve before the failure peak. Based on a comparison with Kachanov's micro‐mechanical model, we confirm that the critical micro‐crack density value equal to 0.3 reflects the point at which crack interaction cannot be neglected. The CZM is assigned a pure mode II cohesive law that accounts for the dependence of the shear strength and energy release rate on confining pressure. The cohesive shear strength of the CZM is calibrated by calculating the shear stress necessary to reach a CDM damage of 0.3 during a direct shear test. We find that the shear cohesive strength of the CZM depends linearly on the confining pressure. Triaxial compression tests are simulated, in which the shale sample is modeled as an FE CDM continuum that contains a predefined thin cohesive zone representing the idealized shear fracture plane. The shear energy release rate of the CZM is fitted in order to match to the post‐peak stress/strain curves obtained during experimental tests performed on Bakken shale. We find that the energy release rate depends linearly on the shear cohesive strength. We then use the calibrated shale rheology to simulate the propagation of a meter‐scale mode II fracture. Under low confining pressure, the macroscopic crack (CZM) and its damaged zone (CDM) propagate simultaneously (i.e., during the same loading increments). Under high confining pressure, the fracture propagates in slip‐friction, that is, the debonding of the cohesive zone alternates with the propagation of continuum damage. The computational method is applicable to a range of geological injection problems including hydraulic fracturing and fluid storage and should be further enhanced by the addition of mode I and mixed mode (I+II+III) propagation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
279.
Macropores are subsurface connected void spaces caused by processes such as fracture of soils, micro‐erosion, and fauna burrows. They are common near streams (e.g. hyporheic and riparian zones) and may act as preferential flow paths between surface and groundwaters, affecting hydrologic and biogeochemical processes. We tested the hydrologic function of macropores by constructing an artificial macropore within the saturated zone of a meander bend (open macropore, ‘OM’) and later filling its upstream end (partially filled macropore, ‘PFM’). For each treatment, we injected saline tracer at an upgradient monitoring well within the meander and monitored downgradient hydraulics and tracer transport. Pressure transducers in monitoring wells indicated hydraulic gradients within the meander were 32% higher perpendicular to and 6% higher parallel to the macropore for the OM than for the PFM. Additionally, hydraulic conductivities measured via falling head tests were 29 to 550 times higher along the macropore than in nearby sediment. We used electrical conductivity probes in wells and electrical resistivity imaging to track solute transport. Transport velocities through the meander were on average 9 and 21% higher (per temporal moment analysis and observed tracer peak, respectively) for the OM than for the PFM. Furthermore, temporal moments of tracer breakthrough analysis indicated downgradient longitudinal dispersion and breakthrough tracer curve tailing were on average 234% and 182% higher for the OM, respectively. This suggests the OM enabled solute transport at overall shorter timescales than the matrix but also increased tailing. Our results demonstrate the importance of macropores to meander bend hydrology and solute transport. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
280.
Stream–subsurface exchange plays a significant role in the fate and transport of contaminants in streams. It has been modelled explicitly by considering fundamental processes such as hydraulic exchange, colloid filtration, and contaminant interactions with streambed sediments and colloids. The models have been successfully applied to simulate the transport of inorganic metals and nutrients. In this study, laboratory experiments were conducted in a recirculating flume to investigate the exchange of a hydrophobic organic contaminant, p,p′‐dichloro‐diphenyl‐dichloroethane (DDE), between a stream and a quartz sand bed. A previously developed process‐based multiphase exchange model was modified by accounting for the p,p′‐DDE kinetic adsorption to and desorption from the bed sediments/colloids and was applied to interpret the experimental results. Model input parameters were obtained by conducting independent small‐scale batch experiments. Results indicate that the immobilization of p,p′‐DDE in the quartz sand bed can occur under representative natural stream conditions. The observed p,p′‐DDE exchange was successfully simulated by the process‐based model. The model sensitivity analysis results show that the exchange of p,p′‐DDE can be sensitive to either the sediment sorption/desorption parameters or colloidal parameters depending on the experimental conditions tested. For the experimental conditions employed here, the effect of colloids on contaminant transport is expected to be minimal, and the stream–subsurface exchange of p,p′‐DDE is dominated by the interaction of p,p′‐DDE with bed sediment. The work presented here contributes to a better mechanistic understanding of the complex transport process that hydrophobic organic contaminants undergo in natural streams and to the development of reliable, predictive models for the assessment of impacted streams. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号