首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   24篇
  国内免费   2篇
大气科学   2篇
地球物理   60篇
地质学   21篇
综合类   4篇
自然地理   23篇
  2022年   1篇
  2021年   8篇
  2020年   8篇
  2019年   12篇
  2018年   3篇
  2017年   4篇
  2016年   6篇
  2015年   7篇
  2014年   6篇
  2013年   5篇
  2012年   2篇
  2011年   1篇
  2010年   5篇
  2009年   3篇
  2008年   10篇
  2007年   5篇
  2006年   3篇
  2005年   5篇
  2004年   3篇
  2003年   6篇
  2001年   1篇
  1999年   2篇
  1997年   1篇
  1992年   2篇
  1989年   1篇
排序方式: 共有110条查询结果,搜索用时 312 毫秒
51.
During the last decades, increasing exports of both dissolved organic carbon (DOC) and iron were observed from peat catchments in North America and Europe with potential consequences for water quality of streamwater and carbon storages of soils. As mobilisation and transport processes of DOC and iron in peat catchments are only partly understood, the purpose of this study was to elucidate these processes in an intensively monitored and studied system. Specifically, it was hypothesised that dissimilatory iron reduction in riparian peatland soils mobilises DOC initially adsorbed to iron minerals. During stormflow conditions, both DOC and iron will be transported into the stream network. Ferrous iron may be reoxidised at redox interfaces on its way to the stream, and subsequently, ferric iron could be transported together with DOC as complexes. To test these hypotheses, generalised additive models (GAMs) were applied to 14 years of weekly time series of discharge and concentrations of selected solutes measured in a German headwater stream called Lehstenbach. This stream drains a 4.19‐km2 forested mountain catchment; one third of which is covered by riparian peatland soils. We interpreted results of different types of GAM in the way that (a) iron reduction drove the mobilisation of DOC from peatland soils and that (b) both iron and DOC were transported as complexes after their joint mobilisation to and within the steam. It was speculated that low nitrate availability in the uppermost wetland soil layer, particularly during the growing season, promoted iron reduction and thus the mobilisation of DOC. However, the influence of nitrate on the DOC mobilisation remains relatively uncertain. This influence could be further investigated using methods similar to the GAM analysis conducted here for other catchments with long‐term data as well as detailed measurements of the relevant species in riparian wetland soils and the adjacent stream network.  相似文献   
52.
Mountainous areas are characterized by steep slopes and rocky landforms, with hydrological conditions varying rapidly from upstream to downstream, creating variable interactions between groundwater and surface water. In this study, mechanisms of groundwater–surface water interactions within a headwater catchment of the North China Plain were assessed along the stream length and during different seasons, using hydrochemical and stable isotope data, and groundwater residence times estimated using chlorofluorocarbons. These tracers indicate that the river is gaining, due to groundwater discharge in the headwater catchment both in the dry and rainy seasons. Residence time estimation of groundwater using chlorofluorocarbons data reveals that groundwater flow in the shallow sedimentary aquifer is dominated by the binary mixing of water approximating a piston flow model along 2 flow paths: old water, carried by a regional flow system along the direction of river flow, along with young water, which enters the river through local flow systems from hilly areas adjacent to the river valley (particularly during the rainy season). The larger mixing ratio of young water from lateral groundwater recharge and return flow of irrigation during the rainy season result in higher ion concentrations in groundwater than in the dry season. The binary mixing model showed that the ratio of young water versus total groundwater ranged from 0.88 to 0.22 and 1.0 to 0.74 in the upper and lower reaches, respectively. In the middle reach, meandering stream morphology allows some loss of river water back into the aquifer, leading to increasing estimates of the ratio of young water (from 0.22 to 1). This is also explained by declining groundwater levels near the river, due to groundwater extraction for agricultural irrigation. The switch from a greater predominance of regional flow in the dry season, to more localized groundwater flow paths in the wet season is an important groundwater–surface water interactions mechanism, with important catchment management implications.  相似文献   
53.
The Yellow River headwaters region (YRHR) contributes nearly 40% of total flow in the Yellow River basin, which is suffering from a serious water shortage problem. Investigation of the relationship between runoff and climate variables is important for understanding the variation trend of runoff in the YRHR under global climate change. Global and local climate variables, including the West Pacific subtropical high; northern hemisphere polar vortex (NH); Tibetan Plateau Index B (TPI‐B); southern oscillation index; sea surface temperature; and precipitation, evaporation, and temperature, were fully considered to explore the relationship with runoff at Jimai, Maqu, and Tangnaihai stations from 1956 to 2014. The results reveal that runoff had a decreasing trend, which will likely be maintained in the future, and there was a significant change in runoff around 1995 at all stations. Correlation analysis indicated that runoff was dominated by precipitation, NH, temperature, and TPI‐B, and a substantial correlation was observed with sea surface temperature and evaporation, but there was little correlation with West Pacific subtropical high and southern oscillation index. Furthermore, impacts of climate change on runoff variations were distinctly different at different temporal scales. Three dominant runoff periodicities were identified by a singular spectrum analysis‐multitaper method and continuous wavelet transform, that is, 1.0‐, 6.9‐, and 24.8‐year runoff periodicities. In addition, runoff was positively correlated with temperature at a 1‐year periodicity, negatively correlated with TPI‐B at a 6.9‐year periodicity, and positively correlated with NH at a 24.8‐year periodicity, that is, temperature, TPI‐B, and NH‐controlled runoff at annual, interannual, and interdecadal scales. Further, all analyses of the stations in the YRHR showed excellent consistency. The results will provide valuable information for water resource management in the YRHR.  相似文献   
54.
Headwater streams expand, contract, and disconnect in response to seasonal moisture conditions or those related to individual precipitation events. The fluctuation of the surface flow extent, or active drainage network, reflects catchment storage characteristics and has important impacts on stream ecology; however, the hydrological mechanisms that drive this phenomenon are still uncertain. Here, we present field surveys of the active drainage networks of four headwater streams in Central Idaho's Frank Church‐River of No Return Wilderness (7–21 km2) spanning the spring and summer months of 2014. We report the total length of the active drainage networks, which varied as a power law function with stream discharge with an average exponent of 0.11 ± 0.03 (range of 0.05–0.20). Generally, these active drainage networks were less responsive to changes in discharge than many streams in past studies. We observed that the locations where surface flow originates, or flowheads, were often stable, and an average of 64% of the change in active drainage network length was explained by downstream discontinuities. Analysis of geologic and geomorphic characteristics of individual watersheds and flowheads suggests that most flowheads below approximately 2200 m are supported by stable flowpaths controlled by bedrock structure. At higher elevations, small accumulation areas and saturation of shallow and conductive soil and colluvium after snowmelt result in more mobile flowhead locations. The dynamics of active drainage networks can help illuminate the spatiotemporal structure of flowpaths supporting surface flow. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
55.
Proglacial stream development was studied in coastal British Columbia and Washington, focusing on reaches exposed by post‐Little Ice Age (LIA) glacier retreat, to address three principal questions: (i) Does the legacy of LIA glaciation influence the evolution of channel morphology? (ii) How long does it take for riparian forest to establish following glacier retreat? (iii) Can newly exposed proglacial streams provide suitable fish habitat? Channel morphologies were identified by field surveys of 69 reaches in 10 catchments. Riparian forest development and potential fish habitat were characterized in those reaches and an additional 22 catchments using GIS analysis. The landscape template imposed by the Quaternary glaciation appears to override most of the modern effects of the LIA in controlling channel‐reach morphology. Binary logistic regression analysis identified elevation and time since deglaciation as primary controls on the presence of riparian forest. At higher elevations, establishment of morphologically functional riparian forest could take several centuries, prolonged by channel instability associated with post‐LIA sediment inputs. Of the recently deglaciated streams included in this analysis, the majority (86%) of the total length was of suitable gradient for fish and could be accessed either by downstream populations or from adjacent lakes. Predicted maximum weekly average stream temperature (MWAT) indicated that the post‐LIA study streams were thermally suitable for cold‐water fish. A future scenario of glacier loss would cause a 14% decline in accessible cold‐water thermal habitat in post‐LIA streams. Decreased summer flows due to glacier retreat could further limit usable habitat by reducing stream depths and wetted perimeters. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
56.
以九龙江流域典型的农业源头溪流——五川溪为研究区域,开展每月一次共2年的NO,一采样用于溪流氮饱和特征的研究.结果表明,2005年和2007年溪流的NO,一浓度分别为35.5~319.5μeqL^-1和5.0~353.6μxeqL^-1,根据Stoddard和Traaen提出的氮饱和划分准则,五川流域分别处于氮饱和阶段2/3和阶段2,接近氮饱和.氮饱和阶段随着NO。一浓度的增加而上升,五川溪流的氮饱和阶段存在着时间上的变化.河流生态系统中氮负荷增加,使河流达到氮饱和状态,并最终改变溪流系统硝化和反硝化等氮的生物地球化学循环过程.随着NO,一浓度的增加,五川源头溪流已成为流域内重要的NO3^-源.  相似文献   
57.
基于ArcGIS,将汾河源区景观带谱分为亚高山草甸带、针阔叶林带、灌丛荒草带和河流两岸农田耕作带等4个类型,并对不同景观带表土沉积粒度和地球化学元素进行了初步分析。结果表明汾河源区表土沉积物以粉砂为主,辅以一定数量的极细砂和粘土,细砂和中粗砂含量较低;总体上沉积物分选差,呈正偏和极正偏的分布,峰态中等到尖窄;沉积物沉积环境复杂多样,风成、海相/河流沉积并存,与区域地质构造运动、风成物质堆积和河流发育有着密切的关系。地球化学元素分析发现该区表土沉积以SiO2、Al2O3、Fe2O3为主,与上部陆壳(UCC)和中国黄土(CL)相比具有显著的同源性;而Ca和Mg等活动性元素则随海拔高度影响的降水变化呈现明显的垂向差异;沉积物化学风化基本处于脱Ca和Na的初级阶段,属寒冷干燥条件下的低等化学风化。研究旨在揭示沉积物粒度特征和地球化学行为,为进一步认识汾河源区生态环境变化提供理论基础和数据支撑。  相似文献   
58.
天山乌鲁木齐河源末次冰期冰川沉积光释光测年   总被引:6,自引:5,他引:1  
乌鲁木齐河源地区是中国冰川遗迹保存最丰富、地貌最典型的区域之一,是根据冰川遗迹重建第四纪冰川历史的理想地区。大量的研究工作以及技术测年结果也使其成为试验冰川沉积光释光(optically stimulated luminescence,OSL)测年可行性的理想地点。共采集了6个冰碛及上覆黄土样品用于光释光测年。提取38~63 μm的石英颗粒,运用SAR-SGC法测试等效剂量。各种检验表明测试程序是适用的。通过地貌地层关系、重复样品、已有年代的对比等方法,检验该地冰川沉积OSL测年的可行性。结果表明,OSL年代结果与地貌地层新老关系非常吻合,与已有的其他测年技术的年代结果也具可比性,表明这些样品的OSL信号在沉积之前晒退较好,OSL年代是可信的。冰川观测站侧碛垄的OSL年代为14.8±1.2 ka;9号冰川支谷口附近冰碛的OSL年代为13.5±1.1 ka和17.2±1.3 ka;上望峰冰碛的OSL年代为20.1±1.6 ka。综合OSL年代结果与此前其他测年结果,这几套冰碛垄形成于深海氧同位素MIS 2阶段应该是比较统一的认识。上望峰冰碛上覆黄土的OSL年代(10.5±0.8 ka)也印证了该结论。OSL年代指示上望峰冰碛对应于末次冰期最盛期,冰川观测站和9号冰川支谷谷口冰碛对应于晚冰期。下望峰冰碛的OSL年代为36.3±2.8 ka,对应于MIS 3阶段。下望峰冰碛的形成时代,仍有待更多沉积学以及测年工作进一步确定。  相似文献   
59.
天山乌鲁木齐河源1号冰川夏季消融期内反射率的变化   总被引:3,自引:5,他引:3  
白重瑗 《冰川冻土》1989,11(4):311-334
  相似文献   
60.
Some steep headwater streams of the mid‐mountains landscape of the flysch belt of the Western Carpathians are affected by debris flows. Connectivity of the largest boulder and cobble fractions has been evaluated in steep streams found in the transitional zones between the hillslopes and alluvial cones of similar lithology and watershed morphometry. Two longitudinal profiles affected by past debris‐flow activity and two longitudinal profiles void of such processes were selected. In the first case, active channels were characterised by the presence of the coarsest fraction, while a downstream trend of sediment coarsening or fining lacked any influence of contemporary fluvial processes and sediment supply. In addition, debris‐flow‐affected streams showed greater differences between the middle axis of the coarsest particle and the particle‐size index including the lengths of all three axes, which is most likely the result of limited active fluvial transport. All the studied streams demonstrated general downstream fining of the largest particles, which resulted from local flysch lithology containing more resistant sandstones in the upper parts of the watershed. The trend of sediment fining was more rapid in the longitudinal profiles unaffected by past debris flows. These types of streams also showed adjustment of the coarsest bed fraction to contemporary processes in channels by sediment coarsening in incised reaches and sediment fining in depositional reaches as well as by downstream response to some lateral sediment inputs. The index of the unit stream power showed no correlation with the considered coarsest fraction in both fluvial‐dominated channels and debris‐flow‐affected channels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号